These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

259 related articles for article (PubMed ID: 20195658)

  • 1. Thiol dioxygenases: unique families of cupin proteins.
    Stipanuk MH; Simmons CR; Karplus PA; Dominy JE
    Amino Acids; 2011 Jun; 41(1):91-102. PubMed ID: 20195658
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Differences in the Second Coordination Sphere Tailor the Substrate Specificity and Reactivity of Thiol Dioxygenases.
    Fernandez RL; Juntunen ND; Brunold TC
    Acc Chem Res; 2022 Sep; 55(17):2480-2490. PubMed ID: 35994511
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structures of Arg- and Gln-type bacterial cysteine dioxygenase homologs.
    Driggers CM; Hartman SJ; Karplus PA
    Protein Sci; 2015 Jan; 24(1):154-61. PubMed ID: 25307852
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Non-standard amino acid incorporation into thiol dioxygenases.
    Bennett ZD; Brunold TC
    Methods Enzymol; 2024; 703():121-145. PubMed ID: 39260993
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Understanding human thiol dioxygenase enzymes: structure to function, and biology to pathology.
    Sarkar B; Kulharia M; Mantha AK
    Int J Exp Pathol; 2017 Apr; 98(2):52-66. PubMed ID: 28439920
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Functional analysis of active amino acid residues of the mercaptosuccinate dioxygenase of Variovorax paradoxus B4.
    Brandt U; Galant G; Meinert-Berning C; Steinbüchel A
    Enzyme Microb Technol; 2019 Jan; 120():61-68. PubMed ID: 30396400
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification and characterization of bacterial cysteine dioxygenases: a new route of cysteine degradation for eubacteria.
    Dominy JE; Simmons CR; Karplus PA; Gehring AM; Stipanuk MH
    J Bacteriol; 2006 Aug; 188(15):5561-9. PubMed ID: 16855246
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The 3-His Metal Coordination Site Promotes the Coupling of Oxygen Activation to Cysteine Oxidation in Cysteine Dioxygenase.
    Forbes DL; Meneely KM; Chilton AS; Lamb AL; Ellis HR
    Biochemistry; 2020 Jun; 59(21):2022-2031. PubMed ID: 32368901
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Convergent Evolution of Fungal Cysteine Dioxygenases.
    Flückger S; Igareta NV; Seebeck FP
    Chembiochem; 2020 Nov; 21(21):3082-3086. PubMed ID: 32543095
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Emerging roles for thiol dioxygenases as oxygen sensors.
    Gunawardana DM; Heathcote KC; Flashman E
    FEBS J; 2022 Sep; 289(18):5426-5439. PubMed ID: 34346181
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Discovery and characterization of a second mammalian thiol dioxygenase, cysteamine dioxygenase.
    Dominy JE; Simmons CR; Hirschberger LL; Hwang J; Coloso RM; Stipanuk MH
    J Biol Chem; 2007 Aug; 282(35):25189-98. PubMed ID: 17581819
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Why do cysteine dioxygenase enzymes contain a 3-His ligand motif rather than a 2His/1Asp motif like most nonheme dioxygenases?
    de Visser SP; Straganz GD
    J Phys Chem A; 2009 Mar; 113(9):1835-46. PubMed ID: 19199799
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ring-cleaving dioxygenases with a cupin fold.
    Fetzner S
    Appl Environ Microbiol; 2012 Apr; 78(8):2505-14. PubMed ID: 22287012
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structure and mechanism of mouse cysteine dioxygenase.
    McCoy JG; Bailey LJ; Bitto E; Bingman CA; Aceti DJ; Fox BG; Phillips GN
    Proc Natl Acad Sci U S A; 2006 Feb; 103(9):3084-9. PubMed ID: 16492780
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cysteine dioxygenase: structure and mechanism.
    Joseph CA; Maroney MJ
    Chem Commun (Camb); 2007 Aug; (32):3338-49. PubMed ID: 18019494
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Non-chemical proton-dependent steps prior to O2-activation limit Azotobacter vinelandii 3-mercaptopropionic acid dioxygenase (MDO) catalysis.
    Crowell JK; Sardar S; Hossain MS; Foss FW; Pierce BS
    Arch Biochem Biophys; 2016 Aug; 604():86-94. PubMed ID: 27311613
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The transcription factors HNF-4α and NF-κB activate the CDO gene to promote taurine biosynthesis in the golden pompano Trachinotus ovatus (Linnaeus 1758).
    Liang J; Guo H; He H; Liu B; Zhang N; Xian L; Zhu K; Zhang D
    Gene; 2024 Nov; 928():148786. PubMed ID: 39047959
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of the nitrosyl adduct of substrate-bound mouse cysteine dioxygenase by electron paramagnetic resonance: electronic structure of the active site and mechanistic implications.
    Pierce BS; Gardner JD; Bailey LJ; Brunold TC; Fox BG
    Biochemistry; 2007 Jul; 46(29):8569-78. PubMed ID: 17602574
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Shifting redox states of the iron center partitions CDO between crosslink formation or cysteine oxidation.
    Njeri CW; Ellis HR
    Arch Biochem Biophys; 2014 Sep; 558():61-9. PubMed ID: 24929188
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Formation Mechanism of Cofactor Cys-Tyr in the Cysteine Dioxygenases (CDO and F
    Wang Y; Yan L; Li X; Zhang S; Wei J; Liu Y
    Inorg Chem; 2021 Jun; 60(11):7844-7856. PubMed ID: 34008401
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.