BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 20195704)

  • 21. Qualitative and quantitative changes of beech wood degraded by wood-rotting basidiomycetes monitored by Fourier transform infrared spectroscopic methods and multivariate data analysis.
    Fackler K; Schwanninger M; Gradinger C; Hinterstoisser B; Messner K
    FEMS Microbiol Lett; 2007 Jun; 271(2):162-9. PubMed ID: 17466029
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Wood decomposing abilities of diverse lignicolous fungi on nondecayed and decayed beech wood.
    Fukasawa Y; Osono T; Takeda H
    Mycologia; 2011; 103(3):474-82. PubMed ID: 21262989
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Evaluation of dazomet as fumigant for the control of brown root rot disease.
    Fu CH; Hu BY; Chang TT; Hsueh KL; Hsu WT
    Pest Manag Sci; 2012 Jul; 68(7):959-62. PubMed ID: 22522815
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Characterization of Basidiomycetes associated with wood rot of citrus in southern Italy.
    Roccotelli A; Schena L; Sanzani SM; Cacciola SO; Mosca S; Faedda R; Ippolito A; di San Lio GM
    Phytopathology; 2014 Aug; 104(8):851-8. PubMed ID: 24502208
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Chemical composition and natural durability of juvenile and mature heartwood of Robinia pseudoacacia L.
    Latorraca JV; Dünisch O; Koch G
    An Acad Bras Cienc; 2011 Sep; 83(3):1059-68. PubMed ID: 21779654
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Influence of Hyphal Inoculum potential on the Competitive Success of Fungi Colonizing Wood.
    Song Z; Vail A; Sadowsky MJ; Schilling JS
    Microb Ecol; 2015 May; 69(4):758-67. PubMed ID: 25750000
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Analysis of commercial proanthocyanidins. Part 4: solid state (13)C NMR as a tool for in situ analysis of proanthocyanidin tannins, in heartwood and bark of quebracho and acacia, and related species.
    Reid DG; Bonnet SL; Kemp G; van der Westhuizen JH
    Phytochemistry; 2013 Oct; 94():243-8. PubMed ID: 23838626
    [TBL] [Abstract][Full Text] [Related]  

  • 28. [Isolation of wood-decaying fungi and evaluation of their enzymatic activity (Quindío, Colombia)].
    Chaparro DF; Rosas DC; Varela A
    Rev Iberoam Micol; 2009 Dec; 26(4):238-43. PubMed ID: 19796977
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Evaluation of thermally modified Grevillea robusta heartwood as an alternative to shortage of wood resource in Kenya: Characterisation of physicochemical properties and improvement of bio-resistance.
    Mburu F; Dumarçay S; Huber F; Petrissans M; Gérardin P
    Bioresour Technol; 2007 Dec; 98(18):3478-86. PubMed ID: 17196817
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Tolerance to wood preservatives by copper-tolerant wood-rot fungi native to south-central Chile.
    Guillén Y; Navias D; Machuca A
    Biodegradation; 2009 Feb; 20(1):135-42. PubMed ID: 18654748
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Analysis of character correlations among wood decay mechanisms, mating systems, and substrate ranges in homobasidiomycetes.
    Hibbett DS; Donoghue MJ
    Syst Biol; 2001 Apr; 50(2):215-42. PubMed ID: 12116929
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Two-stage fungal biopulping for improved enzymatic hydrolysis of wood.
    Giles RL; Galloway ER; Elliott GD; Parrow MW
    Bioresour Technol; 2011 Sep; 102(17):8011-6. PubMed ID: 21719275
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Competition between two wood-degrading fungi with distinct influences on residues.
    Song Z; Vail A; Sadowsky MJ; Schilling JS
    FEMS Microbiol Ecol; 2012 Jan; 79(1):109-17. PubMed ID: 22067023
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Lignin-modifying enzymes in filamentous basidiomycetes--ecological, functional and phylogenetic review.
    Lundell TK; Mäkelä MR; Hildén K
    J Basic Microbiol; 2010 Feb; 50(1):5-20. PubMed ID: 20175122
    [TBL] [Abstract][Full Text] [Related]  

  • 35. (+)-Dihydrorobinetin: a marker of vinegar aging in acacia (Robinia pseudoacacia) wood.
    Cerezo AB; Espartero JL; Winterhalter P; Garcia-Parrilla MC; Troncoso AM
    J Agric Food Chem; 2009 Oct; 57(20):9551-4. PubMed ID: 19785439
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Fungal hydroquinones contribute to brown rot of wood.
    Suzuki MR; Hunt CG; Houtman CJ; Dalebroux ZD; Hammel KE
    Environ Microbiol; 2006 Dec; 8(12):2214-23. PubMed ID: 17107562
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Changes in soil diversity and global activities following invasions of the exotic invasive plant, Amaranthus viridis L., decrease the growth of native sahelian Acacia species.
    Sanon A; Béguiristain T; Cébron A; Berthelin J; Ndoye I; Leyval C; Sylla S; Duponnois R
    FEMS Microbiol Ecol; 2009 Oct; 70(1):118-31. PubMed ID: 19656191
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Fungicidal activity of beta-thujaplicin analogues.
    Baya M; Soulounganga P; Gelhaye E; Gérardin P
    Pest Manag Sci; 2001 Sep; 57(9):833-8. PubMed ID: 11561410
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Fungal Degradation of Extractives Plays an Important Role in the Brown Rot Decay of Scots Pine Heartwood.
    Belt T; Harju A; Kilpeläinen P; Venäläinen M
    Front Plant Sci; 2022; 13():912555. PubMed ID: 35646036
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Chemical composition and structural features of the macromolecular components of plantation Acacia mangium wood.
    Pinto PC; Evtuguin DV; Pascoal Neto C
    J Agric Food Chem; 2005 Oct; 53(20):7856-62. PubMed ID: 16190642
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.