BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 20195715)

  • 1. Origin of fluorescence lifetimes in human serum albumin. Studies on native and denatured protein.
    Amiri M; Jankeje K; Albani JR
    J Fluoresc; 2010 May; 20(3):651-6. PubMed ID: 20195715
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tryptophan 19 residue is the origin of bovine β-lactoglobulin fluorescence.
    Albani JR; Vogelaer J; Bretesche L; Kmiecik D
    J Pharm Biomed Anal; 2014 Mar; 91():144-50. PubMed ID: 24463042
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sub-structures formed in the excited state are responsible for tryptophan residues fluorescence in β-lactoglobulin.
    Albani JR
    J Fluoresc; 2011 Jul; 21(4):1683-7. PubMed ID: 21350857
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Relation between proteins tertiary structure, tryptophan fluorescence lifetimes and tryptophan S(o)→(1)L(b) and S(o)→(1)L(a) transitions. Studies on α1-acid glycoprotein and β-lactoglobulin.
    Albani JR
    J Fluoresc; 2011 May; 21(3):1301-9. PubMed ID: 21318433
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Origin of tryptophan fluorescence lifetimes. Part 2: fluorescence lifetimes origin of tryptophan in proteins.
    Albani JR
    J Fluoresc; 2014 Jan; 24(1):105-17. PubMed ID: 23907253
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Origin of tryptophan fluorescence lifetimes part 1. Fluorescence lifetimes origin of tryptophan free in solution.
    Albani JR
    J Fluoresc; 2014 Jan; 24(1):93-104. PubMed ID: 23912963
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fluorescence spectral resolution of tryptophan residues in bovine and human serum albumins.
    Tayeh N; Rungassamy T; Albani JR
    J Pharm Biomed Anal; 2009 Sep; 50(2):107-16. PubMed ID: 19473803
    [TBL] [Abstract][Full Text] [Related]  

  • 8. New insights in the interpretation of tryptophan fluorescence : origin of the fluorescence lifetime and characterization of a new fluorescence parameter in proteins: the emission to excitation ratio.
    Albani JR
    J Fluoresc; 2007 Jul; 17(4):406-17. PubMed ID: 17458686
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of human serum albumin forms with pH. Fluorescence lifetime studies.
    Amiri M; Jankeje K; Albani JR
    J Pharm Biomed Anal; 2010 Apr; 51(5):1097-102. PubMed ID: 20005063
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The fluorescence decay of tryptophan residues in native and denatured proteins.
    Grinvald A; Steinberg IZ
    Biochim Biophys Acta; 1976 Apr; 427(2):663-78. PubMed ID: 5134
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of subdomain IIA binding site of human serum albumin in its native, unfolded, and refolded states using small molecular probes.
    Abou-Zied OK; Al-Shihi OI
    J Am Chem Soc; 2008 Aug; 130(32):10793-801. PubMed ID: 18642807
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hydrophobic clustering in acid-denatured IL-2 and fluorescence of a Trp NH-pi H-bond.
    Nanda V; Liang SM; Brand L
    Biochem Biophys Res Commun; 2000 Dec; 279(3):770-8. PubMed ID: 11162427
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Time-resolved fluorescence studies on site-directed mutants of human serum albumin.
    Helms MK; Petersen CE; Bhagavan NV; Jameson DM
    FEBS Lett; 1997 May; 408(1):67-70. PubMed ID: 9180270
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Similarity of fluorescence lifetime distributions for single tryptophan proteins in the random coil state.
    Swaminathan R; Krishnamoorthy G; Periasamy N
    Biophys J; 1994 Nov; 67(5):2013-23. PubMed ID: 7858139
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spectroscopic studies on the interaction of bovine (BSA) and human (HSA) serum albumins with ionic surfactants.
    Gelamo EL; Tabak M
    Spectrochim Acta A Mol Biomol Spectrosc; 2000 Oct; 56A(11):2255-71. PubMed ID: 11058071
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Similarity of Spectral Profiles with Individual Fluorescence Lifetime of Tryptophan in Proteins of Different Structure].
    Nemtseva EV; Lashchuk OO; Gerasimova MA
    Biofizika; 2016; 61(2):231-8. PubMed ID: 27192823
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fluorescence behavior of tryptophan residues of bovine and human serum albumins in ionic surfactant solutions: a comparative study of the two and one tryptophan(s) of bovine and human albumins.
    Moriyama Y; Ohta D; Hachiya K; Mitsui Y; Takeda K
    J Protein Chem; 1996 Apr; 15(3):265-72. PubMed ID: 8804574
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tyrosine fluorescence probing of conformational changes in tryptophan-lacking domain of albumins.
    Zhdanova NG; Maksimov EG; Arutyunyan AM; Fadeev VV; Shirshin EA
    Spectrochim Acta A Mol Biomol Spectrosc; 2017 Mar; 174():223-229. PubMed ID: 27918933
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analysis of tryptophan fluorescence lifetimes in a series of human serum albumin mutants with substitutions in subdomain 2A.
    Siemiarczuk A; Petersen CE; Ha CE; Yang J; Bhagavan NV
    Cell Biochem Biophys; 2004; 40(2):115-22. PubMed ID: 15054218
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Study on effect of lipophilic curcumin on sub-domain IIA site of human serum albumin during unfolded and refolded states: a synchronous fluorescence spectroscopic study.
    Patra D; Barakat C; Tafech RM
    Colloids Surf B Biointerfaces; 2012 Jun; 94():354-61. PubMed ID: 22398366
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.