These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 20195715)

  • 41. Second derivative fluorescence spectroscopy of tryptophan in proteins.
    Mozo-Villarías A
    J Biochem Biophys Methods; 2002 Jan; 50(2-3):163-78. PubMed ID: 11741705
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Probing local secondary structure by fluorescence: time-resolved and circular dichroism studies of highly purified neurotoxins.
    Dahms TE; Szabo AG
    Biophys J; 1995 Aug; 69(2):569-76. PubMed ID: 8527671
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Spatial relationship between the prodan site, Trp-214, and Cys-34 residues in human serum albumin and loss of structure through incremental unfolding.
    Krishnakumar SS; Panda D
    Biochemistry; 2002 Jun; 41(23):7443-52. PubMed ID: 12044178
    [TBL] [Abstract][Full Text] [Related]  

  • 44. A fluorescence study of tryptophan-histidine interactions in the peptide anantin and in solution.
    Vos R; Engelborghs Y
    Photochem Photobiol; 1994 Jul; 60(1):24-32. PubMed ID: 8073074
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Characterisation of molten globule-like state of sheep serum albumin at physiological pH.
    Dar MA; Wahiduzzaman ; Haque MA; Islam A; Hassan MI; Ahmad F
    Int J Biol Macromol; 2016 Aug; 89():605-13. PubMed ID: 27180298
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Fluorescence of cis-1-amino-2-(3-indolyl)cyclohexane-1-carboxylic acid: a single tryptophan chi(1) rotamer model.
    Liu B; Thalji RK; Adams PD; Fronczek FR; McLaughlin ML; Barkley MD
    J Am Chem Soc; 2002 Nov; 124(44):13329-38. PubMed ID: 12405862
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Conformational dynamics of bovine Cu, Zn superoxide dismutase revealed by time-resolved fluorescence spectroscopy of the single tyrosine residue.
    Ferreira ST; Stella L; Gratton E
    Biophys J; 1994 Apr; 66(4):1185-96. PubMed ID: 8038390
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Tryptophan fluorescence of chloramphenicol acetyltransferase: resolution of individual excited-state lifetimes by site-directed mutagenesis and multifrequency phase fluorometry.
    Ellis J; Bagshaw CR; Shaw WV
    Biochemistry; 1995 Mar; 34(11):3513-20. PubMed ID: 7893646
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Probing folding and fluorescence quenching in human gammaD crystallin Greek key domains using triple tryptophan mutant proteins.
    Kosinski-Collins MS; Flaugh SL; King J
    Protein Sci; 2004 Aug; 13(8):2223-35. PubMed ID: 15273315
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Spectroscopic studies on the interaction between riboflavin and albumins.
    Zhao H; Ge M; Zhang Z; Wang W; Wu G
    Spectrochim Acta A Mol Biomol Spectrosc; 2006 Nov; 65(3-4):811-7. PubMed ID: 16530468
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Risperidone interacts with serum albumin forming complex.
    Fragoso VM; Silva D; Cruz FA; Cortez CM
    Environ Toxicol Pharmacol; 2012 Mar; 33(2):262-6. PubMed ID: 22245842
    [TBL] [Abstract][Full Text] [Related]  

  • 52. A long lifetime component in the tryptophan fluorescence of some proteins.
    Döring K; Konermann L; Surrey T; Jähnig F
    Eur Biophys J; 1995; 23(6):423-32. PubMed ID: 7729367
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Anisotropy resolved multidimensional emission spectroscopy (ARMES): A new tool for protein analysis.
    Groza RC; Li B; Ryder AG
    Anal Chim Acta; 2015 Jul; 886():133-42. PubMed ID: 26320645
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Time-resolved fluorescence of the single tryptophan residue in rat alpha-fetoprotein and rat serum albumin: analysis by the maximum-entropy method.
    Gentin M; Vincent M; Brochon JC; Livesey AK; Cittanova N; Gallay J
    Biochemistry; 1990 Nov; 29(45):10405-12. PubMed ID: 1702023
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Determination of the affinity of drugs toward serum albumin by measurement of the quenching of the intrinsic tryptophan fluorescence of the protein.
    Epps DE; Raub TJ; Caiolfa V; Chiari A; Zamai M
    J Pharm Pharmacol; 1999 Jan; 51(1):41-8. PubMed ID: 10197416
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Dipolar relaxation in proteins on the nanosecond timescale observed by wavelength-resolved phase fluorometry of tryptophan fluorescence.
    Lakowicz JR; Cherek H
    J Biol Chem; 1980 Feb; 255(3):831-4. PubMed ID: 7356662
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The nature of the apolar phase influences the structure of the protein emulsifier in oil-in-water emulsions stabilized by bovine serum albumin. A front-surface fluorescence study.
    Rampon V; Brossard C; Mouhous-Riou N; Bousseau B; Llamas G; Genot C
    Adv Colloid Interface Sci; 2004 May; 108-109():87-94. PubMed ID: 15072931
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Role of Charged Amino Acids in Sullying the Fluorescence of Tryptophan or Conjugated Dansyl Probe in Monomeric Proteins.
    Kumar A; Alom SE; Ahari D; Priyadarshi A; Ansari MZ; Swaminathan R
    Biochemistry; 2022 Mar; 61(5):339-353. PubMed ID: 35107253
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Anion-induced stabilization of human serum albumin prevents the formation of intermediate during urea denaturation.
    Muzammil S; Kumar Y; Tayyab S
    Proteins; 2000 Jul; 40(1):29-38. PubMed ID: 10813828
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Detection of water proximity to tryptophan residues in proteins by single photon radioluminescence.
    Bicknese S; Zimet D; Park J; van Hoek AN; Shohet SB; Verkman AS
    Biophys Chem; 1995 May; 54(3):279-90. PubMed ID: 7749062
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.