These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 2019588)

  • 1. Interaction between tetraethylammonium and amino acid residues in the pore of cloned voltage-dependent potassium channels.
    Kavanaugh MP; Varnum MD; Osborne PB; Christie MJ; Busch AE; Adelman JP; North RA
    J Biol Chem; 1991 Apr; 266(12):7583-7. PubMed ID: 2019588
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification of amino acid residues involved in dendrotoxin block of rat voltage-dependent potassium channels.
    Hurst RS; Busch AE; Kavanaugh MP; Osborne PB; North RA; Adelman JP
    Mol Pharmacol; 1991 Oct; 40(4):572-6. PubMed ID: 1921987
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Heteropolymeric potassium channels expressed in Xenopus oocytes from cloned subunits.
    Christie MJ; North RA; Osborne PB; Douglass J; Adelman JP
    Neuron; 1990 Mar; 4(3):405-11. PubMed ID: 2317379
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multiple subunits of a voltage-dependent potassium channel contribute to the binding site for tetraethylammonium.
    Kavanaugh MP; Hurst RS; Yakel J; Varnum MD; Adelman JP; North RA
    Neuron; 1992 Mar; 8(3):493-7. PubMed ID: 1550674
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Exchange of conduction pathways between two related K+ channels.
    Hartmann HA; Kirsch GE; Drewe JA; Taglialatela M; Joho RH; Brown AM
    Science; 1991 Feb; 251(4996):942-4. PubMed ID: 2000495
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cooperative interactions among subunits of a voltage-dependent potassium channel. Evidence from expression of concatenated cDNAs.
    Hurst RS; Kavanaugh MP; Yakel J; Adelman JP; North RA
    J Biol Chem; 1992 Nov; 267(33):23742-5. PubMed ID: 1385425
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mutations affecting TEA blockade and ion permeation in voltage-activated K+ channels.
    MacKinnon R; Yellen G
    Science; 1990 Oct; 250(4978):276-9. PubMed ID: 2218530
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multiple residues specify external tetraethylammonium blockade in voltage-gated potassium channels.
    Pascual JM; Shieh CC; Kirsch GE; Brown AM
    Biophys J; 1995 Aug; 69(2):428-34. PubMed ID: 8527656
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparison of H5, S6, and H5-S6 exchanges on pore properties of voltage-dependent K+ channels.
    Taglialatela M; Champagne MS; Drewe JA; Brown AM
    J Biol Chem; 1994 May; 269(19):13867-73. PubMed ID: 8188663
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mutations affecting internal TEA blockade identify the probable pore-forming region of a K+ channel.
    Yellen G; Jurman ME; Abramson T; MacKinnon R
    Science; 1991 Feb; 251(4996):939-42. PubMed ID: 2000494
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Patterns of internal and external tetraethylammonium block in four homologous K+ channels.
    Taglialatela M; Vandongen AM; Drewe JA; Joho RH; Brown AM; Kirsch GE
    Mol Pharmacol; 1991 Aug; 40(2):299-307. PubMed ID: 1875913
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Repulsion between tetraethylammonium ions in cloned voltage-gated potassium channels.
    Newland CF; Adelman JP; Tempel BL; Almers W
    Neuron; 1992 May; 8(5):975-82. PubMed ID: 1586488
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The P-region and S6 of Kv3.1 contribute to the formation of the ion conduction pathway.
    Aiyar J; Nguyen AN; Chandy KG; Grissmer S
    Biophys J; 1994 Dec; 67(6):2261-4. PubMed ID: 7696467
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Swapping of functional domains in voltage-gated K+ channels.
    Stocker M; Pongs O; Hoth M; Heinemann SH; Stühmer W; Schröter KH; Ruppersberg JP
    Proc Biol Sci; 1991 Aug; 245(1313):101-7. PubMed ID: 1682932
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Internal and external TEA block in single cloned K+ channels.
    Kirsch GE; Taglialatela M; Brown AM
    Am J Physiol; 1991 Oct; 261(4 Pt 1):C583-90. PubMed ID: 1928322
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Functional characterization of a minimal K+ channel expressed from a synthetic gene.
    Hausdorff SF; Goldstein SA; Rushin EE; Miller C
    Biochemistry; 1991 Apr; 30(13):3341-6. PubMed ID: 2009272
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tetraethylammonium block of Slowpoke calcium-activated potassium channels expressed in Xenopus oocytes: evidence for tetrameric channel formation.
    Shen KZ; Lagrutta A; Davies NW; Standen NB; Adelman JP; North RA
    Pflugers Arch; 1994 Mar; 426(5):440-5. PubMed ID: 7517033
    [TBL] [Abstract][Full Text] [Related]  

  • 18. MinK endows the I(Ks) potassium channel pore with sensitivity to internal tetraethylammonium.
    Sesti F; Tai KK; Goldstein SA
    Biophys J; 2000 Sep; 79(3):1369-78. PubMed ID: 10968999
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Current inactivation involves a histidine residue in the pore of the rat lymphocyte potassium channel RGK5.
    Busch AE; Hurst RS; North RA; Adelman JP; Kavanaugh MP
    Biochem Biophys Res Commun; 1991 Sep; 179(3):1384-90. PubMed ID: 1930184
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A structural motif for the voltage-gated potassium channel pore.
    Lipkind GM; Hanck DA; Fozzard HA
    Proc Natl Acad Sci U S A; 1995 Sep; 92(20):9215-9. PubMed ID: 7568104
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.