These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 20196592)

  • 1. Fluorescent indicator displacement assay for ligand-RNA interactions.
    Zhang J; Umemoto S; Nakatani K
    J Am Chem Soc; 2010 Mar; 132(11):3660-1. PubMed ID: 20196592
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fluorescent ligand as a molecular probe for the RNA structure.
    Umemoto S; Zhang J; Dohno C; Nakatani K
    Nucleic Acids Symp Ser (Oxf); 2008; (52):211-2. PubMed ID: 18776328
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fluorescent indicator displacement assay of ligands targeting 10 microRNA precursors.
    Murata A; Harada Y; Fukuzumi T; Nakatani K
    Bioorg Med Chem; 2013 Nov; 21(22):7101-6. PubMed ID: 24084297
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fluorescent peptide indicator displacement assay for monitoring interactions between RNA and RNA binding proteins.
    Jeong HS; Choi SM; Kim HW; Park JW; Park HN; Park SM; Jang SK; Rhee YM; Kim BH
    Mol Biosyst; 2013 May; 9(5):948-51. PubMed ID: 23255000
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fluorescence-based methods for evaluating the RNA affinity and specificity of HIV-1 Rev-RRE inhibitors.
    Luedtke NW; Tor Y
    Biopolymers; 2003 Sep; 70(1):103-19. PubMed ID: 12925996
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structure-activity studies on the fluorescent indicator in a displacement assay for the screening of small molecules binding to RNA.
    Umemoto S; Im S; Zhang J; Hagihara M; Murata A; Harada Y; Fukuzumi T; Wazaki T; Sasaoka S; Nakatani K
    Chemistry; 2012 Aug; 18(32):9999-10008. PubMed ID: 22763984
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fluorescence-based peptide screening using ligand peptides directly conjugated to a thiolated glass surface.
    Lim CH; Cho HM; Choo J; Neff S; Jungbauer A; Kumada Y; Katoh S; Lee EK
    Biomed Microdevices; 2009 Jun; 11(3):663-9. PubMed ID: 19142733
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A strategy for the development of small-molecule-based sensors that strongly fluoresce when bound to a specific RNA.
    Sparano BA; Koide K
    J Am Chem Soc; 2005 Nov; 127(43):14954-5. PubMed ID: 16248596
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Photocrosslinking of RNA and photoMet-containing amphiphilic alpha-helical peptides.
    Hyun S; Han A; Yu J
    Chembiochem; 2009 Apr; 10(6):987-9. PubMed ID: 19308928
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Construction of a stable functional ribonucleopeptide complex by the covalent linking method.
    Fukuda M; Nakano S; Tainaka K; Fujieda N; Morii T
    Nucleic Acids Symp Ser (Oxf); 2008; (52):195-6. PubMed ID: 18776320
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Competition dialysis: a method for the study of structural selective nucleic acid binding.
    Ragazzon PA; Garbett NC; Chaires JB
    Methods; 2007 Jun; 42(2):173-82. PubMed ID: 17472899
    [TBL] [Abstract][Full Text] [Related]  

  • 12. RNA-ligand interactions: affinity and specificity of aminoglycoside dimers and acridine conjugates to the HIV-1 Rev response element.
    Luedtke NW; Liu Q; Tor Y
    Biochemistry; 2003 Oct; 42(39):11391-403. PubMed ID: 14516190
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A strategy for the design of selective RNA binding agents. Preparation and RRE RNA binding affinities of a neomycin-peptide nucleic acid heteroconjugate library.
    Hyun S; Lee KH; Yu J
    Bioorg Med Chem Lett; 2006 Sep; 16(18):4757-9. PubMed ID: 16875816
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Controlling a substrate-binding geometry of ribonucleopeptide receptor.
    Fukuda M; Nakano S; Morii T
    Nucleic Acids Symp Ser (Oxf); 2007; (51):421-2. PubMed ID: 18029766
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Design of sensing ribonucleopeptides for small ligands.
    Hagihara M; Hasegawa T; Tanabe Y; Sato S; Yoshikawa S; Ohkubo K; Morii T
    Nucleic Acids Symp Ser (Oxf); 2004; (48):33-4. PubMed ID: 17150464
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Construction of ribonucleopeptide-based fluorescent sensors for biologically active amines.
    Hasegawa T; Hayashi H; Morii T
    Nucleic Acids Symp Ser (Oxf); 2007; (51):423-4. PubMed ID: 18029767
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Covalently linked fluorescent ribonucreopeptide sensors.
    Fukuda M; Fong-Fong L; Morii T
    Nucleic Acids Symp Ser (Oxf); 2009; (53):257-8. PubMed ID: 19749358
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quenched ligand-directed tosylate reagents for one-step construction of turn-on fluorescent biosensors.
    Tsukiji S; Wang H; Miyagawa M; Tamura T; Takaoka Y; Hamachi I
    J Am Chem Soc; 2009 Jul; 131(25):9046-54. PubMed ID: 19499918
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effect of RNA secondary structures on RNA-ligand binding and the modifier RNA mechanism: a quantitative model.
    Hackermüller J; Meisner NC; Auer M; Jaritz M; Stadler PF
    Gene; 2005 Jan; 345(1):3-12. PubMed ID: 15716109
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantifying RNA-peptide interaction by single-quantum dot-based nanosensor: an approach for drug screening.
    Zhang CY; Johnson LW
    Anal Chem; 2007 Oct; 79(20):7775-81. PubMed ID: 17877365
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.