These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

893 related articles for article (PubMed ID: 20196649)

  • 41. PDX-1 protein is internalized by lipid raft-dependent macropinocytosis.
    Noguchi H; Matsumoto S; Okitsu T; Iwanaga Y; Yonekawa Y; Nagata H; Matsushita M; Wei FY; Matsui H; Minami K; Seino S; Masui Y; Futaki S; Tanaka K
    Cell Transplant; 2005; 14(9):637-45. PubMed ID: 16405074
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Macropinocytosis is the entry mechanism of amphotropic murine leukemia virus.
    Rasmussen I; Vilhardt F
    J Virol; 2015 Feb; 89(3):1851-66. PubMed ID: 25428868
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Lipid rafts and caveolae as portals for endocytosis: new insights and common mechanisms.
    Parton RG; Richards AA
    Traffic; 2003 Nov; 4(11):724-38. PubMed ID: 14617356
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Entry of dengue virus serotype 2 into ECV304 cells depends on clathrin-dependent endocytosis, but not on caveolae-dependent endocytosis.
    Peng T; Wang JL; Chen W; Zhang JL; Gao N; Chen ZT; Xu XF; Fan DY; An J
    Can J Microbiol; 2009 Feb; 55(2):139-45. PubMed ID: 19295646
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Caveolar endocytosis of simian virus 40 reveals a new two-step vesicular-transport pathway to the ER.
    Pelkmans L; Kartenbeck J; Helenius A
    Nat Cell Biol; 2001 May; 3(5):473-83. PubMed ID: 11331875
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Newcastle disease virus employs macropinocytosis and Rab5a-dependent intracellular trafficking to infect DF-1 cells.
    Tan L; Zhang Y; Zhan Y; Yuan Y; Sun Y; Qiu X; Meng C; Song C; Liao Y; Ding C
    Oncotarget; 2016 Dec; 7(52):86117-86133. PubMed ID: 27861142
    [TBL] [Abstract][Full Text] [Related]  

  • 47. ORFV entry into host cells via clathrin-mediated endocytosis and macropinocytosis.
    Tang X; Xie Y; Li G; Niyazbekova Z; Li S; Chang J; Chen D; Ma W
    Vet Microbiol; 2023 Sep; 284():109831. PubMed ID: 37480660
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Macropinocytosis and Clathrin-Dependent Endocytosis Play Pivotal Roles for the Infectious Entry of Puumala Virus.
    Bauherr S; Larsberg F; Petrich A; Sperber HS; Klose-Grzelka V; Luckner M; Azab W; Schade M; Höfer CT; Lehmann MJ; Witkowski PT; Krüger DH; Herrmann A; Schwarzer R
    J Virol; 2020 Jul; 94(14):. PubMed ID: 32350075
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Small molecule pinocytosis and clathrin-dependent endocytosis at the intestinal brush border: Two separate pathways into the enterocyte.
    Michael Danielsen E; Hansen GH
    Biochim Biophys Acta; 2016 Feb; 1858(2):233-43. PubMed ID: 26615917
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Role of flotillins in the endocytosis of GPCR in salivary gland epithelial cells.
    Park MY; Kim N; Wu LL; Yu GY; Park K
    Biochem Biophys Res Commun; 2016 Aug; 476(4):237-244. PubMed ID: 27221048
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Mechanisms of endocytosis utilized by viruses during infection.
    Słońska A; Cymerys J; Bańbura MW
    Postepy Hig Med Dosw (Online); 2016 Jun; 70(0):572-80. PubMed ID: 27333927
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Host cell factors and functions involved in vesicular stomatitis virus entry.
    Johannsdottir HK; Mancini R; Kartenbeck J; Amato L; Helenius A
    J Virol; 2009 Jan; 83(1):440-53. PubMed ID: 18971266
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Multiple internalization pathways of polyelectrolyte multilayer capsules into mammalian cells.
    Kastl L; Sasse D; Wulf V; Hartmann R; Mircheski J; Ranke C; Carregal-Romero S; Martínez-López JA; Fernández-Chacón R; Parak WJ; Elsasser HP; Rivera Gil P
    ACS Nano; 2013 Aug; 7(8):6605-18. PubMed ID: 23826767
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Secrets of caveolae- and lipid raft-mediated endocytosis revealed by mammalian viruses.
    Pelkmans L
    Biochim Biophys Acta; 2005 Dec; 1746(3):295-304. PubMed ID: 16126288
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Caveolae and the regulation of endocytosis.
    Kiss AL
    Adv Exp Med Biol; 2012; 729():14-28. PubMed ID: 22411311
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Chemically Designed Nanoscale Materials for Controlling Cellular Processes.
    Debnath K; Pal S; Jana NR
    Acc Chem Res; 2021 Jul; 54(14):2916-2927. PubMed ID: 34232016
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Endocytosis of Bacteriophages.
    Miernikiewicz P; Dąbrowska K
    Curr Opin Virol; 2022 Feb; 52():229-235. PubMed ID: 34968792
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Selectivity of commonly used inhibitors of clathrin-mediated and caveolae-dependent endocytosis of G protein-coupled receptors.
    Guo S; Zhang X; Zheng M; Zhang X; Min C; Wang Z; Cheon SH; Oak MH; Nah SY; Kim KM
    Biochim Biophys Acta; 2015 Oct; 1848(10 Pt A):2101-10. PubMed ID: 26055893
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Clathrin-independent endocytosis: new insights into caveolae and non-caveolar lipid raft carriers.
    Kirkham M; Parton RG
    Biochim Biophys Acta; 2005 Sep; 1745(3):273-86. PubMed ID: 16046009
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Influenza entry pathways in polarized MDCK cells.
    Zhang Y; Whittaker GR
    Biochem Biophys Res Commun; 2014 Jul; 450(1):234-9. PubMed ID: 24878525
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 45.