These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 20196744)

  • 1. Epistatic interactions.
    VanderWeele TJ
    Stat Appl Genet Mol Biol; 2010; 9(1):Article 1. PubMed ID: 20196744
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Compositional epistasis: an epidemiologic perspective.
    Suzuki E; VanderWeele TJ
    Methods Mol Biol; 2015; 1253():197-216. PubMed ID: 25403534
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tests for compositional epistasis under single interaction-parameter models.
    VanderWeele TJ; Laird NM
    Ann Hum Genet; 2011 Jan; 75(1):146-56. PubMed ID: 20726965
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identifying quantitative trait locus by genetic background interactions in association studies.
    Jannink JL
    Genetics; 2007 May; 176(1):553-61. PubMed ID: 17179077
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Detecting epistasis with the marginal epistasis test in genetic mapping studies of quantitative traits.
    Crawford L; Zeng P; Mukherjee S; Zhou X
    PLoS Genet; 2017 Jul; 13(7):e1006869. PubMed ID: 28746338
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reconstructability analysis as a tool for identifying gene-gene interactions in studies of human diseases.
    Shervais S; Kramer PL; Westaway SK; Cox NJ; Zwick M
    Stat Appl Genet Mol Biol; 2010; 9(1):Article18. PubMed ID: 20361857
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Testing for gene-gene interaction with AMMI models.
    Barhdadi A; Dubé MP
    Stat Appl Genet Mol Biol; 2010; 9():Article 2. PubMed ID: 20196752
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Detecting purely epistatic multi-locus interactions by an omnibus permutation test on ensembles of two-locus analyses.
    Wongseree W; Assawamakin A; Piroonratana T; Sinsomros S; Limwongse C; Chaiyaratana N
    BMC Bioinformatics; 2009 Sep; 10():294. PubMed ID: 19761607
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Detecting association using epistatic information.
    Chapman J; Clayton D
    Genet Epidemiol; 2007 Dec; 31(8):894-909. PubMed ID: 17654599
    [TBL] [Abstract][Full Text] [Related]  

  • 10. IndOR: a new statistical procedure to test for SNP-SNP epistasis in genome-wide association studies.
    Emily M
    Stat Med; 2012 Sep; 31(21):2359-73. PubMed ID: 22711278
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Epistasis in quantitative trait locus linkage analysis: interaction or main effect?
    Purcell S; Sham PC
    Behav Genet; 2004 Mar; 34(2):143-52. PubMed ID: 14755179
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phantom Epistasis in Genomic Selection: On the Predictive Ability of Epistatic Models.
    Schrauf MF; Martini JWR; Simianer H; de Los Campos G; Cantet R; Freudenthal J; Korte A; Munilla S
    G3 (Bethesda); 2020 Sep; 10(9):3137-3145. PubMed ID: 32709618
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Asymptotic distribution for epistatic tests in case-control studies.
    Liu T; Thalamuthu A; Liu JJ; Chen C; Wang Z; Wu R
    Genomics; 2011 Aug; 98(2):145-51. PubMed ID: 21620949
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A complete classification of epistatic two-locus models.
    Hallgrímsdóttir IB; Yuster DS
    BMC Genet; 2008 Feb; 9():17. PubMed ID: 18284682
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enabling personal genomics with an explicit test of epistasis.
    Greene CS; Himmelstein DS; Nelson HH; Kelsey KT; Williams SM; Andrew AS; Karagas MR; Moore JH
    Pac Symp Biocomput; 2010; ():327-36. PubMed ID: 19908385
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Statistical and Functional Studies Identify Epistasis of Cardiovascular Risk Genomic Variants From Genome-Wide Association Studies.
    Li Y; Cho H; Wang F; Canela-Xandri O; Luo C; Rawlik K; Archacki S; Xu C; Tenesa A; Chen Q; Wang QK
    J Am Heart Assoc; 2020 Apr; 9(7):e014146. PubMed ID: 32237974
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A new strategy for linkage analysis under epistasis taking into account genetic heterogeneity.
    Bureau A; Mérette C; Croteau J; Fournier A; Chagnon YC; Roy MA; Maziade M
    Hum Hered; 2009; 68(4):231-42. PubMed ID: 19622890
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Predicting recurrence risks under epistatic models.
    Beaty TH; Maestri NE; Meyers DA; Murphy EA
    Am J Med Genet; 1987 Nov; 28(3):631-45. PubMed ID: 3425632
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Imperfect Linkage Disequilibrium Generates Phantom Epistasis (& Perils of Big Data).
    de Los Campos G; Sorensen DA; Toro MA
    G3 (Bethesda); 2019 May; 9(5):1429-1436. PubMed ID: 30877081
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Improving strategies for detecting genetic patterns of disease susceptibility in association studies.
    Calle ML; Urrea V; Vellalta G; Malats N; Steen KV
    Stat Med; 2008 Dec; 27(30):6532-46. PubMed ID: 18837071
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.