These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 20196754)

  • 1. Informative or noninformative calls for gene expression: a latent variable approach.
    Kasim A; Lin D; Van Sanden S; Clevert DA; Bijnens L; Göhlmann H; Amaratunga D; Hochreiter S; Shkedy Z; Talloen W
    Stat Appl Genet Mol Biol; 2010; 9():Article 4. PubMed ID: 20196754
    [TBL] [Abstract][Full Text] [Related]  

  • 2. I/NI-calls for the exclusion of non-informative genes: a highly effective filtering tool for microarray data.
    Talloen W; Clevert DA; Hochreiter S; Amaratunga D; Bijnens L; Kass S; Göhlmann HW
    Bioinformatics; 2007 Nov; 23(21):2897-902. PubMed ID: 17921172
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Gene filtering in the analysis of Illumina microarray experiments.
    Forcheh AC; Verbeke G; Kasim A; Lin D; Shkedy Z; Talloen W; Göhlmann HW; Clement L
    Stat Appl Genet Mol Biol; 2012 Jan; 11(2):. PubMed ID: 22499694
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Laplace mixture model for identification of differential expression in microarray experiments.
    Bhowmick D; Davison AC; Goldstein DR; Ruffieux Y
    Biostatistics; 2006 Oct; 7(4):630-41. PubMed ID: 16565148
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An empirical Bayesian method for estimating biological networks from temporal microarray data.
    Rau A; Jaffrézic F; Foulley JL; Doerge RW
    Stat Appl Genet Mol Biol; 2010; 9():Article 9. PubMed ID: 20196759
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Variance component estimation for mixed model analysis of cDNA microarray data.
    Sarholz B; Piepho HP
    Biom J; 2008 Dec; 50(6):927-39. PubMed ID: 19035549
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An alternative model of type A dependence in a gene set of correlated genes.
    Lim J; Kim J; Kim BS
    Stat Appl Genet Mol Biol; 2010; 9():Article 12. PubMed ID: 20196747
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Shrinkage estimation of effect sizes as an alternative to hypothesis testing followed by estimation in high-dimensional biology: applications to differential gene expression.
    Montazeri Z; Yanofsky CM; Bickel DR
    Stat Appl Genet Mol Biol; 2010; 9():Article23. PubMed ID: 20597849
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparison of seven methods for producing Affymetrix expression scores based on False Discovery Rates in disease profiling data.
    Shedden K; Chen W; Kuick R; Ghosh D; Macdonald J; Cho KR; Giordano TJ; Gruber SB; Fearon ER; Taylor JM; Hanash S
    BMC Bioinformatics; 2005 Feb; 6():26. PubMed ID: 15705192
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Leveraging two-way probe-level block design for identifying differential gene expression with high-density oligonucleotide arrays.
    Barrera L; Benner C; Tao YC; Winzeler E; Zhou Y
    BMC Bioinformatics; 2004 Apr; 5():42. PubMed ID: 15099405
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A multi-array multi-SNP genotyping algorithm for Affymetrix SNP microarrays.
    Xiao Y; Segal MR; Yang YH; Yeh RF
    Bioinformatics; 2007 Jun; 23(12):1459-67. PubMed ID: 17459966
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A SATS algorithm for jointly identifying multiple differentially expressed gene sets.
    Yang TY
    Stat Med; 2011 Jul; 30(16):2028-39. PubMed ID: 21472762
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A flexible two-stage procedure for identifying gene sets that are differentially expressed.
    Heller R; Manduchi E; Grant GR; Ewens WJ
    Bioinformatics; 2009 Apr; 25(8):1019-25. PubMed ID: 19213738
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Can Zipf's law be adapted to normalize microarrays?
    Lu T; Costello CM; Croucher PJ; Häsler R; Deuschl G; Schreiber S
    BMC Bioinformatics; 2005 Feb; 6():37. PubMed ID: 15727680
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Use of within-array replicate spots for assessing differential expression in microarray experiments.
    Smyth GK; Michaud J; Scott HS
    Bioinformatics; 2005 May; 21(9):2067-75. PubMed ID: 15657102
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Including probe-level measurement error in robust mixture clustering of replicated microarray gene expression.
    Liu X; Rattray M
    Stat Appl Genet Mol Biol; 2010; 9():Article42. PubMed ID: 21194414
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A new summarization method for Affymetrix probe level data.
    Hochreiter S; Clevert DA; Obermayer K
    Bioinformatics; 2006 Apr; 22(8):943-9. PubMed ID: 16473874
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A framework for list representation, enabling list stabilization through incorporation of gene exchangeabilities.
    Soneson C; Fontes M
    Biostatistics; 2012 Jan; 13(1):129-41. PubMed ID: 21908866
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A unified approach for simultaneous gene clustering and differential expression identification.
    Yuan M; Kendziorski C
    Biometrics; 2006 Dec; 62(4):1089-98. PubMed ID: 17156283
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Linear mixed model selection for false discovery rate control in microarray data analysis.
    Demirkale CY; Nettleton D; Maiti T
    Biometrics; 2010 Jun; 66(2):621-9. PubMed ID: 19522873
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.