These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 20196754)

  • 21. Probe rank approaches for gene selection in oligonucleotide arrays with a small number of replicates.
    Chen DT; Chen JJ; Soong SJ
    Bioinformatics; 2005 Jun; 21(12):2861-6. PubMed ID: 15814562
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Bayesian classification and non-Bayesian label estimation via EM algorithm to identify differentially expressed genes: a comparative study.
    Antunes M; Sousa L
    Biom J; 2008 Oct; 50(5):824-36. PubMed ID: 18932140
    [TBL] [Abstract][Full Text] [Related]  

  • 23. An improved nonparametric approach for detecting differentially expressed genes with replicated microarray data.
    Zhang S
    Stat Appl Genet Mol Biol; 2006; 5():Article30. PubMed ID: 17402914
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Quality control of Platinum Spike dataset by probe-level mixed models.
    Khamiakova T; Shkedy Z; Amaratunga D; Talloen W; Göhlmann H; Bijnens L; Kasim A
    Math Biosci; 2014 Feb; 248():1-10. PubMed ID: 24300569
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Bayesian model accounting for within-class biological variability in Serial Analysis of Gene Expression (SAGE).
    Vêncio RZ; Brentani H; Patrão DF; Pereira CA
    BMC Bioinformatics; 2004 Aug; 5():119. PubMed ID: 15339345
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Modeling gene expression from microarray expression data with state-space equations.
    Wu FX; Zhang WJ; Kusalik AJ
    Pac Symp Biocomput; 2004; ():581-92. PubMed ID: 14992535
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Model selection and psychological theory: a discussion of the differences between the Akaike information criterion (AIC) and the Bayesian information criterion (BIC).
    Vrieze SI
    Psychol Methods; 2012 Jun; 17(2):228-43. PubMed ID: 22309957
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Inferring gene regulatory networks from time-ordered gene expression data of Bacillus subtilis using differential equations.
    de Hoon MJ; Imoto S; Kobayashi K; Ogasawara N; Miyano S
    Pac Symp Biocomput; 2003; ():17-28. PubMed ID: 12603014
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Sparse time series chain graphical models for reconstructing genetic networks.
    Abegaz F; Wit E
    Biostatistics; 2013 Jul; 14(3):586-99. PubMed ID: 23462022
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Filtering genes to improve sensitivity in oligonucleotide microarray data analysis.
    Calza S; Raffelsberger W; Ploner A; Sahel J; Leveillard T; Pawitan Y
    Nucleic Acids Res; 2007; 35(16):e102. PubMed ID: 17702762
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Statistical development and evaluation of microarray gene expression data filters.
    Pounds S; Cheng C
    J Comput Biol; 2005 May; 12(4):482-95. PubMed ID: 15882143
    [TBL] [Abstract][Full Text] [Related]  

  • 32. An empirical Bayes approach for analysis of diverse periodic trends in time-course gene expression data.
    Kocak M; George EO; Pyne S; Pounds S
    Bioinformatics; 2013 Jan; 29(2):182-8. PubMed ID: 23172863
    [TBL] [Abstract][Full Text] [Related]  

  • 33. An integrated approach for the analysis of biological pathways using mixed models.
    Wang L; Zhang B; Wolfinger RD; Chen X
    PLoS Genet; 2008 Jul; 4(7):e1000115. PubMed ID: 18852846
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Improved gene selection for classification of microarrays.
    Jaeger J; Sengupta R; Ruzzo WL
    Pac Symp Biocomput; 2003; ():53-64. PubMed ID: 12603017
    [TBL] [Abstract][Full Text] [Related]  

  • 35. M-quantile regression analysis of temporal gene expression data.
    Vinciotti V; Yu K
    Stat Appl Genet Mol Biol; 2009; 8():Article 41. PubMed ID: 19799560
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Correlation structure and variable selection in generalized estimating equations via composite likelihood information criteria.
    Nikoloulopoulos AK
    Stat Med; 2016 Jun; 35(14):2377-90. PubMed ID: 26822854
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A nonlinear mixed-effects model for estimating calibration intervals for unknown concentrations in two-color microarray data with spike-ins.
    Thilakarathne PJ; Verbeke G; Engelen K; Marchal K
    Stat Appl Genet Mol Biol; 2009; 8():Article 5. PubMed ID: 19222388
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A marginal mixture model for selecting differentially expressed genes across two types of tissue samples.
    Qiu W; He W; Wang X; Lazarus R
    Int J Biostat; 2008 Oct; 4(1):Article 20. PubMed ID: 20231912
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A Bayesian network classification methodology for gene expression data.
    Helman P; Veroff R; Atlas SR; Willman C
    J Comput Biol; 2004; 11(4):581-615. PubMed ID: 15579233
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Linear combination test for hierarchical gene set analysis.
    Wang X; Dinu I; Liu W; Yasui Y
    Stat Appl Genet Mol Biol; 2011; 10():Article 13. PubMed ID: 21381438
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.