These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 20196855)

  • 1. Reverse engineering a gene network using an asynchronous parallel evolution strategy.
    Jostins L; Jaeger J
    BMC Syst Biol; 2010 Mar; 4():17. PubMed ID: 20196855
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evolutionary approaches for the reverse-engineering of gene regulatory networks: a study on a biologically realistic dataset.
    Auliac C; Frouin V; Gidrol X; d'Alché-Buc F
    BMC Bioinformatics; 2008 Feb; 9():91. PubMed ID: 18261218
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inferring genetic interactions via a nonlinear model and an optimization algorithm.
    Chen CM; Lee C; Chuang CL; Wang CC; Shieh GS
    BMC Syst Biol; 2010 Feb; 4():16. PubMed ID: 20184777
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Designing a parallel evolutionary algorithm for inferring gene networks on the cloud computing environment.
    Lee WP; Hsiao YT; Hwang WC
    BMC Syst Biol; 2014 Jan; 8():5. PubMed ID: 24428926
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An intelligent two-stage evolutionary algorithm for dynamic pathway identification from gene expression profiles.
    Ho SY; Hsieh CH; Yu FC; Huang HL
    IEEE/ACM Trans Comput Biol Bioinform; 2007; 4(4):648-704. PubMed ID: 17975275
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synchronous versus asynchronous modeling of gene regulatory networks.
    Garg A; Di Cara A; Xenarios I; Mendoza L; De Micheli G
    Bioinformatics; 2008 Sep; 24(17):1917-25. PubMed ID: 18614585
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An evolutionary optimization strategy using graphics processing units to efficiently investigate gene-gene interactions in genetic association studies.
    Fontanarosa JB; Dai Y
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():5547-50. PubMed ID: 22255595
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reverse engineering of dynamic networks.
    Stigler B; Jarrah A; Stillman M; Laubenbacher R
    Ann N Y Acad Sci; 2007 Dec; 1115():168-77. PubMed ID: 17925347
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evolutionary optimization with data collocation for reverse engineering of biological networks.
    Tsai KY; Wang FS
    Bioinformatics; 2005 Apr; 21(7):1180-8. PubMed ID: 15513993
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Integer programming-based method for observability of singleton attractors in Boolean networks.
    Cheng X; Qiu Y; Hou W; Ching WK
    IET Syst Biol; 2017 Feb; 11(1):30-35. PubMed ID: 28303791
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rank-based edge reconstruction for scale-free genetic regulatory networks.
    Chen G; Larsen P; Almasri E; Dai Y
    BMC Bioinformatics; 2008 Jan; 9():75. PubMed ID: 18237422
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparing association network algorithms for reverse engineering of large-scale gene regulatory networks: synthetic versus real data.
    Soranzo N; Bianconi G; Altafini C
    Bioinformatics; 2007 Jul; 23(13):1640-7. PubMed ID: 17485431
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A new asynchronous parallel algorithm for inferring large-scale gene regulatory networks.
    Xiao X; Zhang W; Zou X
    PLoS One; 2015; 10(3):e0119294. PubMed ID: 25807392
    [TBL] [Abstract][Full Text] [Related]  

  • 14. MICRAT: a novel algorithm for inferring gene regulatory networks using time series gene expression data.
    Yang B; Xu Y; Maxwell A; Koh W; Gong P; Zhang C
    BMC Syst Biol; 2018 Dec; 12(Suppl 7):115. PubMed ID: 30547796
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hybrid grammar-based approach to nonlinear dynamical system identification from biological time series.
    McKinney BA; Crowe JE; Voss HU; Crooke PS; Barney N; Moore JH
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Feb; 73(2 Pt 1):021912. PubMed ID: 16605367
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reverse engineering of gene regulatory network using restricted gene expression programming.
    Yang B; Liu S; Zhang W
    J Bioinform Comput Biol; 2016 Oct; 14(5):1650021. PubMed ID: 27338130
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inference of S-system models of genetic networks using a cooperative coevolutionary algorithm.
    Kimura S; Ide K; Kashihara A; Kano M; Hatakeyama M; Masui R; Nakagawa N; Yokoyama S; Kuramitsu S; Konagaya A
    Bioinformatics; 2005 Apr; 21(7):1154-63. PubMed ID: 15514004
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reverse engineering of gene regulatory networks.
    Cho KH; Choo SM; Jung SH; Kim JR; Choi HS; Kim J
    IET Syst Biol; 2007 May; 1(3):149-63. PubMed ID: 17591174
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fitting a geometric graph to a protein-protein interaction network.
    Higham DJ; Rasajski M; Przulj N
    Bioinformatics; 2008 Apr; 24(8):1093-9. PubMed ID: 18344248
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The hierarchical fair competition (HFC) framework for sustainable evolutionary algorithms.
    Hu J; Goodman E; Seo K; Fan Z; Rosenberg R
    Evol Comput; 2005; 13(2):241-77. PubMed ID: 15969902
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.