These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

264 related articles for article (PubMed ID: 20197309)

  • 1. The transcription factor ATF4 promotes skeletal myofiber atrophy during fasting.
    Ebert SM; Monteys AM; Fox DK; Bongers KS; Shields BE; Malmberg SE; Davidson BL; Suneja M; Adams CM
    Mol Endocrinol; 2010 Apr; 24(4):790-9. PubMed ID: 20197309
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Role of ATF4 in skeletal muscle atrophy.
    Adams CM; Ebert SM; Dyle MC
    Curr Opin Clin Nutr Metab Care; 2017 May; 20(3):164-168. PubMed ID: 28376050
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification and Small Molecule Inhibition of an Activating Transcription Factor 4 (ATF4)-dependent Pathway to Age-related Skeletal Muscle Weakness and Atrophy.
    Ebert SM; Dyle MC; Bullard SA; Dierdorff JM; Murry DJ; Fox DK; Bongers KS; Lira VA; Meyerholz DK; Talley JJ; Adams CM
    J Biol Chem; 2015 Oct; 290(42):25497-511. PubMed ID: 26338703
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Activating transcription factor 4 (ATF4) promotes skeletal muscle atrophy by forming a heterodimer with the transcriptional regulator C/EBPβ.
    Ebert SM; Bullard SA; Basisty N; Marcotte GR; Skopec ZP; Dierdorff JM; Al-Zougbi A; Tomcheck KC; DeLau AD; Rathmacher JA; Bodine SC; Schilling B; Adams CM
    J Biol Chem; 2020 Feb; 295(9):2787-2803. PubMed ID: 31953319
    [TBL] [Abstract][Full Text] [Related]  

  • 5. p53 and ATF4 mediate distinct and additive pathways to skeletal muscle atrophy during limb immobilization.
    Fox DK; Ebert SM; Bongers KS; Dyle MC; Bullard SA; Dierdorff JM; Kunkel SD; Adams CM
    Am J Physiol Endocrinol Metab; 2014 Aug; 307(3):E245-61. PubMed ID: 24895282
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Skeletal muscle denervation causes skeletal muscle atrophy through a pathway that involves both Gadd45a and HDAC4.
    Bongers KS; Fox DK; Ebert SM; Kunkel SD; Dyle MC; Bullard SA; Dierdorff JM; Adams CM
    Am J Physiol Endocrinol Metab; 2013 Oct; 305(7):E907-15. PubMed ID: 23941879
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stress-induced skeletal muscle Gadd45a expression reprograms myonuclei and causes muscle atrophy.
    Ebert SM; Dyle MC; Kunkel SD; Bullard SA; Bongers KS; Fox DK; Dierdorff JM; Foster ED; Adams CM
    J Biol Chem; 2012 Aug; 287(33):27290-301. PubMed ID: 22692209
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Thbs1 regulates skeletal muscle mass in a TGFβ-Smad2/3-ATF4-dependent manner.
    Vanhoutte D; Schips TG; Minerath RA; Huo J; Kavuri NSS; Prasad V; Lin SC; Bround MJ; Sargent MA; Adams CM; Molkentin JD
    Cell Rep; 2024 May; 43(5):114149. PubMed ID: 38678560
    [TBL] [Abstract][Full Text] [Related]  

  • 9. FOXO1 cooperates with C/EBPδ and ATF4 to regulate skeletal muscle atrophy transcriptional program during fasting.
    Oyabu M; Takigawa K; Mizutani S; Hatazawa Y; Fujita M; Ohira Y; Sugimoto T; Suzuki O; Tsuchiya K; Suganami T; Ogawa Y; Ishihara K; Miura S; Kamei Y
    FASEB J; 2022 Feb; 36(2):e22152. PubMed ID: 35061305
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spermine oxidase maintains basal skeletal muscle gene expression and fiber size and is strongly repressed by conditions that cause skeletal muscle atrophy.
    Bongers KS; Fox DK; Kunkel SD; Stebounova LV; Murry DJ; Pufall MA; Ebert SM; Dyle MC; Bullard SA; Dierdorff JM; Adams CM
    Am J Physiol Endocrinol Metab; 2015 Jan; 308(2):E144-58. PubMed ID: 25406264
    [TBL] [Abstract][Full Text] [Related]  

  • 11. mRNA expression signatures of human skeletal muscle atrophy identify a natural compound that increases muscle mass.
    Kunkel SD; Suneja M; Ebert SM; Bongers KS; Fox DK; Malmberg SE; Alipour F; Shields RK; Adams CM
    Cell Metab; 2011 Jun; 13(6):627-38. PubMed ID: 21641545
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cardiac ankyrin repeat protein is a marker of skeletal muscle pathological remodelling.
    Laure L; Suel L; Roudaut C; Bourg N; Ouali A; Bartoli M; Richard I; Danièle N
    FEBS J; 2009 Feb; 276(3):669-84. PubMed ID: 19143834
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Induction of ATF4-Regulated Atrogenes Is Uncoupled from Muscle Atrophy during Disuse in Halofuginone-Treated Mice and in Hibernating Brown Bears.
    Cussonneau L; Coudy-Gandilhon C; Deval C; Chaouki G; Djelloul-Mazouz M; Delorme Y; Hermet J; Gauquelin-Koch G; Polge C; Taillandier D; Averous J; Bruhat A; Jousse C; Papet I; Bertile F; Lefai E; Fafournoux P; Maurin AC; Combaret L
    Int J Mol Sci; 2022 Dec; 24(1):. PubMed ID: 36614063
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Induction of autophagy through the activating transcription factor 4 (ATF4)-dependent amino acid response pathway in maternal skeletal muscle may function as the molecular memory in response to gestational protein restriction to alert offspring to maternal nutrition.
    Wang H; Wilson GJ; Zhou D; Lezmi S; Chen X; Layman DK; Pan YX
    Br J Nutr; 2015 Aug; 114(4):519-32. PubMed ID: 26198178
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The transcription regulator ATF4 is a mediator of skeletal muscle aging.
    Miller MJ; Marcotte GR; Basisty N; Wehrfritz C; Ryan ZC; Strub MD; McKeen AT; Stern JI; Nath KA; Rasmussen BB; Judge AR; Schilling B; Ebert SM; Adams CM
    Geroscience; 2023 Aug; 45(4):2525-2543. PubMed ID: 37014538
    [TBL] [Abstract][Full Text] [Related]  

  • 16. ATF4-dependent increase in mitochondrial-endoplasmic reticulum tethering following OPA1 deletion in skeletal muscle.
    Hinton A; Katti P; Mungai M; Hall DD; Koval O; Shao J; Vue Z; Lopez EG; Rostami R; Neikirk K; Ponce J; Streeter J; Schickling B; Bacevac S; Grueter C; Marshall A; Beasley HK; Do Koo Y; Bodine SC; Nava NGR; Quintana AM; Song LS; Grumbach IM; Pereira RO; Glancy B; Abel ED
    J Cell Physiol; 2024 Apr; 239(4):e31204. PubMed ID: 38419397
    [TBL] [Abstract][Full Text] [Related]  

  • 17. PGC-1α over-expression suppresses the skeletal muscle atrophy and myofiber-type composition during hindlimb unloading.
    Wang J; Wang F; Zhang P; Liu H; He J; Zhang C; Fan M; Chen X
    Biosci Biotechnol Biochem; 2017 Mar; 81(3):500-513. PubMed ID: 27869526
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biology of Activating Transcription Factor 4 (ATF4) and Its Role in Skeletal Muscle Atrophy.
    Ebert SM; Rasmussen BB; Judge AR; Judge SM; Larsson L; Wek RC; Anthony TG; Marcotte GR; Miller MJ; Yorek MA; Vella A; Volpi E; Stern JI; Strub MD; Ryan Z; Talley JJ; Adams CM
    J Nutr; 2022 Apr; 152(4):926-938. PubMed ID: 34958390
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reduction in activating transcription factor 4 promotes carbon tetrachloride and lipopolysaccharide/D‑galactosamine‑mediated liver injury in mice.
    Zhao X; Zhou H; Cheng Y; Yu W; Luo G; Duan C; Yao F; Xiao B; Feng C; Xia X; Wei M; Wang Y; Li J; Dai R
    Mol Med Rep; 2018 Aug; 18(2):1718-1725. PubMed ID: 29845243
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of spaceflight on murine skeletal muscle gene expression.
    Allen DL; Bandstra ER; Harrison BC; Thorng S; Stodieck LS; Kostenuik PJ; Morony S; Lacey DL; Hammond TG; Leinwand LL; Argraves WS; Bateman TA; Barth JL
    J Appl Physiol (1985); 2009 Feb; 106(2):582-95. PubMed ID: 19074574
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.