These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
5. Optical absorption and photoemission in semitransparent and opaque Cs(3)Sb photocathodes. Johnson SM Appl Opt; 1993 May; 32(13):2262-5. PubMed ID: 20820377 [TBL] [Abstract][Full Text] [Related]
6. Performance characteristics of proximity focused ultraviolet image converters. Williams JT; Feibelman WA Appl Opt; 1973 Dec; 12(12):2832-7. PubMed ID: 20125880 [TBL] [Abstract][Full Text] [Related]
7. Variation of spectral response for exponential-doped transmission-mode GaAs photocathodes in the preparation process. Zhang Y; Niu J; Zou J; Chang B; Xiong Y Appl Opt; 2010 Jul; 49(20):3935-40. PubMed ID: 20648170 [TBL] [Abstract][Full Text] [Related]
8. Magnetically focused electronographic image converters for space astronomy applications. Carruthers GR Appl Opt; 1969 Mar; 8(3):633-8. PubMed ID: 20072272 [TBL] [Abstract][Full Text] [Related]
9. Effects of a high energy particle environment on the quantum efficiency of spectrally selective photocathodes for the middle and vacuum ultraviolet. Heath DF; McElaney JH Appl Opt; 1968 Oct; 7(10):2049-52. PubMed ID: 20068933 [TBL] [Abstract][Full Text] [Related]
10. Improving the energy spread and brightness of thermal-field (Schottky) emitters with PHAST--PHoto Assisted Schottky Tip. Cook B; Bronsgeest M; Hagen K; Kruit P Ultramicroscopy; 2009 Apr; 109(5):403-12. PubMed ID: 19185427 [TBL] [Abstract][Full Text] [Related]
11. Interference-enhanced photoemission. Love JA; Sizelove JR Appl Opt; 1968 Jan; 7(1):11-5. PubMed ID: 20062395 [TBL] [Abstract][Full Text] [Related]
12. Sensitivity of coherent oscillations in rat hippocampus to AC electric fields. Deans JK; Powell AD; Jefferys JG J Physiol; 2007 Sep; 583(Pt 2):555-65. PubMed ID: 17599962 [TBL] [Abstract][Full Text] [Related]
13. Optical devices to increase photocathode quantum efficiency. Gunter WD; Grant GR; Shaw SA Appl Opt; 1970 Feb; 9(2):251-7. PubMed ID: 20076179 [TBL] [Abstract][Full Text] [Related]
14. Photomultiplier window materials under electron irradiation: fluorescence and phosphorescence. Viehmann W; Eubanks AG; Pieper GF; Bredekamp JH Appl Opt; 1975 Sep; 14(9):2104-15. PubMed ID: 20154970 [TBL] [Abstract][Full Text] [Related]
15. Exposure assessment for power frequency electric and magnetic fields. Bracken TD Am Ind Hyg Assoc J; 1993 Apr; 54(4):165-77. PubMed ID: 8480632 [TBL] [Abstract][Full Text] [Related]
16. Electric field effects in RUS measurements. Darling TW; Allured B; Tencate JA; Carpenter MA Ultrasonics; 2010 Feb; 50(2):145-9. PubMed ID: 19850314 [TBL] [Abstract][Full Text] [Related]
17. Optical switching in cadmium telluride using a light-induced electrode nonlinearity. Ziari M; Steier WH Appl Opt; 1993 Oct; 32(29):5711-23. PubMed ID: 20856391 [TBL] [Abstract][Full Text] [Related]
18. Interface water dynamics and porating electric fields for phospholipid bilayers. Ziegler MJ; Vernier PT J Phys Chem B; 2008 Oct; 112(43):13588-96. PubMed ID: 18837540 [TBL] [Abstract][Full Text] [Related]
19. A comparative study of the electron transmission through one-dimensional barriers relevant to field-emission problems. Mayer A J Phys Condens Matter; 2010 May; 22(17):175007. PubMed ID: 21393665 [TBL] [Abstract][Full Text] [Related]
20. Surface-emission studies in a high-field RF gun based on measurements of field emission and Schottky-enabled photoemission. Chen H; Du Y; Gai W; Grudiev A; Hua J; Huang W; Power JG; Wisniewski EE; Wuensch W; Tang C; Yan L; You Y Phys Rev Lett; 2012 Nov; 109(20):204802. PubMed ID: 23215494 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]