BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

85 related articles for article (PubMed ID: 20198090)

  • 1. Remote sensing of optical properties in continuously stratified waters.
    Gordon HR
    Appl Opt; 1978 Jun; 17(12):1893-7. PubMed ID: 20198090
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Diffuse reflectance of the ocean: influence of nonuniform phytoplankton pigment profile.
    Gordon HR
    Appl Opt; 1992 Apr; 31(12):2116-29. PubMed ID: 20720867
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Diffuse reflectance of the ocean: some effects of vertical structure.
    Gordon HR; Brown OB
    Appl Opt; 1975 Dec; 14(12):2892-5. PubMed ID: 20155128
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inherent optical properties and satellite retrieval of chlorophyll concentration in the lagoon and open ocean waters of New Caledonia.
    Dupouy C; Neveux J; Ouillon S; Frouin R; Murakami H; Hochard S; Dirberg G
    Mar Pollut Bull; 2010; 61(7-12):503-18. PubMed ID: 20688344
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modeling the effects of near-surface plumes of suspended particulate matter on remote-sensing reflectance of coastal waters.
    Yang Q; Stramski D; He MX
    Appl Opt; 2013 Jan; 52(3):359-74. PubMed ID: 23338181
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Assessment and statistical modeling of the relationship between remotely sensed aerosol optical depth and PM2.5 in the eastern United States.
    Paciorek CJ; Liu Y;
    Res Rep Health Eff Inst; 2012 May; (167):5-83; discussion 85-91. PubMed ID: 22838153
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Radiative transfer: a technique for simulating the ocean in satellite remote sensing calculations.
    Gordon HR
    Appl Opt; 1976 Aug; 15(8):1974-9. PubMed ID: 20165309
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Remotely sensed reflectance and its dependence on vertical structure: a theoretical derivation.
    Zaneveld JR
    Appl Opt; 1982 Nov; 21(22):4146-50. PubMed ID: 20401021
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Model for the interpretation of hyperspectral remote-sensing reflectance.
    Lee Z; Carder KL; Hawes SK; Steward RG; Peacock TG; Davis CO
    Appl Opt; 1994 Aug; 33(24):5721-32. PubMed ID: 20935974
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modeling the remote-sensing reflectance of highly turbid waters.
    Wong J; Liew SC; Wong E; Lee Z
    Appl Opt; 2019 Apr; 58(10):2671-2677. PubMed ID: 31045069
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Empirical Formulas for Estimating Backscattering and Absorption Coefficients in Complex Waters from Remote-Sensing Reflectance Spectra and Examples of Their Application.
    Woźniak SB; Darecki M; Sagan S
    Sensors (Basel); 2019 Sep; 19(18):. PubMed ID: 31546821
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Estimation of the depth of sunlight penetration in the sea for remote sensing.
    Gordon HR; McCluney WR
    Appl Opt; 1975 Feb; 14(2):413-6. PubMed ID: 20134900
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Estimating primary production at depth from remote sensing.
    Lee ZP; Carder KL; Marra J; Steward RG; Perry MJ
    Appl Opt; 1996 Jan; 35(3):463-74. PubMed ID: 21069031
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bio-optical model describing the distribution of irradiance at the sea surface resulting from a point source embedded in the ocean.
    Gordon HR
    Appl Opt; 1987 Oct; 26(19):4133-48. PubMed ID: 20490199
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Radiative transfer in stratified waters: a single-scattering approximation for irradiance.
    Philpot WD
    Appl Opt; 1987 Oct; 26(19):4123-32. PubMed ID: 20490198
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Depth profile of diffuse reflectance near-infrared spectroscopy for measurement of water content in skin.
    Arimoto H; Egawa M; Yamada Y
    Skin Res Technol; 2005 Feb; 11(1):27-35. PubMed ID: 15691256
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Computed relationships between the inherent and apparent optical properties of a flat homogeneous ocean.
    Gordon HR; Brown OB; Jacobs MM
    Appl Opt; 1975 Feb; 14(2):417-27. PubMed ID: 20134901
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Monte Carlo analysis of single fiber reflectance spectroscopy: photon path length and sampling depth.
    Kanick SC; Robinson DJ; Sterenborg HJ; Amelink A
    Phys Med Biol; 2009 Nov; 54(22):6991-7008. PubMed ID: 19887712
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Diffuse reflectance of the ocean: the theory of its augmentation by chlorophyll a fluorescence at 685 nm.
    Gordon HR
    Appl Opt; 1979 Apr; 18(8):1161-6. PubMed ID: 20208902
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Investigation of the spectral reflectance and bidirectional reflectance distribution function of sea foam layer by the Monte Carlo method.
    Ma LX; Wang FQ; Wang CA; Wang CC; Tan JY
    Appl Opt; 2015 Nov; 54(33):9863-74. PubMed ID: 26836550
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.