These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 20198195)

  • 1. Shewregdb: database and visualization environment for experimental and predicted regulatory information in Shewanella oneidensis mr-1.
    Syed MH; Karpinets TV; Leuze MR; Kora GH; Romine MR; Uberbacher EC
    Bioinformation; 2009 Oct; 4(4):169-72. PubMed ID: 20198195
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Shewanella knowledgebase: integration of the experimental data and computational predictions suggests a biological role for transcription of intergenic regions.
    Karpinets TV; Romine MF; Schmoyer DD; Kora GH; Syed MH; Leuze MR; Serres MH; Park BH; Samatova NF; Uberbacher EC
    Database (Oxford); 2010 Jul; 2010():baq012. PubMed ID: 20627862
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Regulation of Gene Expression in Shewanella oneidensis MR-1 during Electron Acceptor Limitation and Bacterial Nanowire Formation.
    Barchinger SE; Pirbadian S; Sambles C; Baker CS; Leung KM; Burroughs NJ; El-Naggar MY; Golbeck JH
    Appl Environ Microbiol; 2016 Sep; 82(17):5428-43. PubMed ID: 27342561
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Discovering cis-regulatory RNAs in Shewanella genomes by Support Vector Machines.
    Xu X; Ji Y; Stormo GD
    PLoS Comput Biol; 2009 Apr; 5(4):e1000338. PubMed ID: 19343219
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Predicting sigma28 promoters in eleven Shewanella genomes.
    Song W; Juhn FS; Naiman DQ; Konstantinidis KT; Gardner TS; Ward MJ
    FEMS Microbiol Lett; 2008 Jun; 283(2):223-30. PubMed ID: 18430000
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The cis-regulatory map of Shewanella genomes.
    Liu J; Xu X; Stormo GD
    Nucleic Acids Res; 2008 Sep; 36(16):5376-90. PubMed ID: 18701645
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Constraint-based model of Shewanella oneidensis MR-1 metabolism: a tool for data analysis and hypothesis generation.
    Pinchuk GE; Hill EA; Geydebrekht OV; De Ingeniis J; Zhang X; Osterman A; Scott JH; Reed SB; Romine MF; Konopka AE; Beliaev AS; Fredrickson JK; Reed JL
    PLoS Comput Biol; 2010 Jun; 6(6):e1000822. PubMed ID: 20589080
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In vivo assembly and single-molecule characterization of the transcription machinery from Shewanella oneidensis MR-1.
    Gassman NR; Ho SO; Korlann Y; Chiang J; Wu Y; Perry LJ; Kim Y; Weiss S
    Protein Expr Purif; 2009 May; 65(1):66-76. PubMed ID: 19111618
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Shewanella oneidensis MR-1 Utilizes both Sodium- and Proton-Pumping NADH Dehydrogenases during Aerobic Growth.
    Duhl KL; Tefft NM; TerAvest MA
    Appl Environ Microbiol; 2018 Jun; 84(12):. PubMed ID: 29654176
    [No Abstract]   [Full Text] [Related]  

  • 10. CRISPRi-sRNA: Transcriptional-Translational Regulation of Extracellular Electron Transfer in Shewanella oneidensis.
    Cao Y; Li X; Li F; Song H
    ACS Synth Biol; 2017 Sep; 6(9):1679-1690. PubMed ID: 28616968
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparative temporal proteomics of a response regulator (SO2426)-deficient strain and wild-type Shewanella oneidensis MR-1 during chromate transformation.
    Chourey K; Thompson MR; Shah M; Zhang B; Verberkmoes NC; Thompson DK; Hettich RL
    J Proteome Res; 2009 Jan; 8(1):59-71. PubMed ID: 19118451
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transcriptome analysis reveals response regulator SO2426-mediated gene expression in Shewanella oneidensis MR-1 under chromate challenge.
    Chourey K; Wei W; Wan XF; Thompson DK
    BMC Genomics; 2008 Aug; 9():395. PubMed ID: 18718017
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Formate Metabolism in Shewanella oneidensis Generates Proton Motive Force and Prevents Growth without an Electron Acceptor.
    Kane AL; Brutinel ED; Joo H; Maysonet R; VanDrisse CM; Kotloski NJ; Gralnick JA
    J Bacteriol; 2016 Apr; 198(8):1337-46. PubMed ID: 26883823
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural domains, protein modules, and sequence similarities enrich our understanding of the Shewanella oneidensis MR-1 proteome.
    Serres MH; Riley M
    OMICS; 2004; 8(4):306-21. PubMed ID: 15703478
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Anaerobic decolorization and detoxification of cationic red X-GRL by Shewanella oneidensis MR-1.
    Li Q; Feng XL; Li TT; Lu XR; Liu QY; Han X; Feng YJ; Liu ZY; Zhang XJ; Xiao X
    Environ Technol; 2018 Sep; 39(18):2382-2389. PubMed ID: 28707516
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structures of nitroaromatic compounds induce Shewanella oneidensis MR-1 to adopt different electron transport pathways to reduce the contaminants.
    Wang H; Zhao HP; Zhu L
    J Hazard Mater; 2020 Feb; 384():121495. PubMed ID: 31704119
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biodegradation of sulfonamides by Shewanella oneidensis MR-1 and Shewanella sp. strain MR-4.
    Mao F; Liu X; Wu K; Zhou C; Si Y
    Biodegradation; 2018 Apr; 29(2):129-140. PubMed ID: 29302823
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An extracytoplasmic function sigma factor-dependent periplasmic glutathione peroxidase is involved in oxidative stress response of Shewanella oneidensis.
    Dai J; Wei H; Tian C; Damron FH; Zhou J; Qiu D
    BMC Microbiol; 2015 Feb; 15():34. PubMed ID: 25887418
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Global transcriptome analysis of Shewanella oneidensis MR-1 exposed to different terminal electron acceptors.
    Beliaev AS; Klingeman DM; Klappenbach JA; Wu L; Romine MF; Tiedje JM; Nealson KH; Fredrickson JK; Zhou J
    J Bacteriol; 2005 Oct; 187(20):7138-45. PubMed ID: 16199584
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Knock-out of SO1377 gene, which encodes the member of a conserved hypothetical bacterial protein family COG2268, results in alteration of iron metabolism, increased spontaneous mutation and hydrogen peroxide sensitivity in Shewanella oneidensis MR-1.
    Gao W; Liu Y; Giometti CS; Tollaksen SL; Khare T; Wu L; Klingeman DM; Fields MW; Zhou J
    BMC Genomics; 2006 Apr; 7():76. PubMed ID: 16600046
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.