These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

247 related articles for article (PubMed ID: 20198238)

  • 1. Combined Cu(I)-catalysed alkyne-azide cycloaddition and furan-maleimide Diels-Alder "click" chemistry approach to thermoresponsive dendrimers.
    Vieyres A; Lam T; Gillet R; Franc G; Castonguay A; Kakkar A
    Chem Commun (Camb); 2010 Mar; 46(11):1875-7. PubMed ID: 20198238
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dendrimer design using Cu(I)-catalyzed alkyne-azide "click-chemistry".
    Franc G; Kakkar A
    Chem Commun (Camb); 2008 Nov; (42):5267-76. PubMed ID: 18985184
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Segment block dendrimers via Diels-Alder cycloaddition.
    Kose MM; Yesilbag G; Sanyal A
    Org Lett; 2008 Jun; 10(12):2353-6. PubMed ID: 18489174
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Click chemistry beyond metal-catalyzed cycloaddition.
    Becer CR; Hoogenboom R; Schubert US
    Angew Chem Int Ed Engl; 2009; 48(27):4900-8. PubMed ID: 19475588
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Strain-promoted alkyne azide cycloaddition for the functionalization of poly(amide)-based dendrons and dendrimers.
    Ornelas C; Broichhagen J; Weck M
    J Am Chem Soc; 2010 Mar; 132(11):3923-31. PubMed ID: 20184364
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A double click strategy applied to the reversible polymerization of furan/vegetable oil monomers.
    Vilela C; Cruciani L; Silvestre AJ; Gandini A
    Macromol Rapid Commun; 2011 Sep; 32(17):1319-23. PubMed ID: 21739508
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synthesis of symmetrical and unsymmetrical PAMAM dendrimers by fusion between azide- and alkyne-functionalized PAMAM dendrons.
    Lee JW; Kim JH; Kim HJ; Han SC; Kim JH; Shin WS; Jin SH
    Bioconjug Chem; 2007; 18(2):579-84. PubMed ID: 17335177
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The application of CuAAC 'click' chemistry to catenane and rotaxane synthesis.
    Hänni KD; Leigh DA
    Chem Soc Rev; 2010 Apr; 39(4):1240-51. PubMed ID: 20309484
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A retro-Diels-Alder reaction to uncover maleimide-modified surfaces on monolayer-protected nanoparticles for reversible covalent assembly.
    Zhu J; Kell AJ; Workentin MS
    Org Lett; 2006 Oct; 8(22):4993-6. PubMed ID: 17048826
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synthesis of N-terminally linked protein dimers and trimers by a combined native chemical ligation-CuAAC click chemistry strategy.
    Xiao J; Tolbert TJ
    Org Lett; 2009 Sep; 11(18):4144-7. PubMed ID: 19705863
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cycloadditions in modern polymer chemistry.
    Delaittre G; Guimard NK; Barner-Kowollik C
    Acc Chem Res; 2015 May; 48(5):1296-307. PubMed ID: 25871918
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Click chemistry under non-classical reaction conditions.
    Kappe CO; Van der Eycken E
    Chem Soc Rev; 2010 Apr; 39(4):1280-90. PubMed ID: 20309486
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Marrying click chemistry with polymerization: expanding the scope of polymeric materials.
    Golas PL; Matyjaszewski K
    Chem Soc Rev; 2010 Apr; 39(4):1338-54. PubMed ID: 20309490
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Diels-Alder "click" chemistry in designing dendritic macromolecules.
    Franc G; Kakkar AK
    Chemistry; 2009 Jun; 15(23):5630-9. PubMed ID: 19418515
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Towards organo-click chemistry: development of organocatalytic multicomponent reactions through combinations of aldol, Wittig, Knoevenagel, Michael, Diels-Alder and Huisgen cycloaddition reactions.
    Ramachary DB; Barbas CF
    Chemistry; 2004 Oct; 10(21):5323-31. PubMed ID: 15390208
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanistic insights into Cu(I)-catalyzed azide-alkyne "click" cycloaddition monitored by real time infrared spectroscopy.
    Sun S; Wu P
    J Phys Chem A; 2010 Aug; 114(32):8331-6. PubMed ID: 20701340
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Efficient construction of therapeutics, bioconjugates, biomaterials and bioactive surfaces using azide-alkyne "click" chemistry.
    Lutz JF; Zarafshani Z
    Adv Drug Deliv Rev; 2008 Jun; 60(9):958-70. PubMed ID: 18406491
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Supramolecular chemistry of pillar[n]arenes functionalised by a copper(i)-catalysed alkyne-azide cycloaddition "click" reaction.
    Kakuta T; Yamagishi T; Ogoshi T
    Chem Commun (Camb); 2017 May; 53(38):5250-5266. PubMed ID: 28387405
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Catalytic "active-metal" template synthesis of [2]rotaxanes, [3]rotaxanes, and molecular shuttles, and some observations on the mechanism of the cu(i)-catalyzed azide-alkyne 1,3-cycloaddition.
    Aucagne V; Berna J; Crowley JD; Goldup SM; Hänni KD; Leigh DA; Lusby PJ; Ronaldson VE; Slawin AM; Viterisi A; Walker DB
    J Am Chem Soc; 2007 Oct; 129(39):11950-63. PubMed ID: 17845039
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Diels-Alder Click-Based Hydrogels for Direct Spatiotemporal Postpatterning via Photoclick Chemistry.
    Yu F; Cao X; Li Y; Chen X
    ACS Macro Lett; 2015 Mar; 4(3):289-292. PubMed ID: 35596333
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.