BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 20198680)

  • 1. Water-tolerant mesoporous-carbon-supported ruthenium catalysts for the hydrolysis of cellulose to glucose.
    Kobayashi H; Komanoya T; Hara K; Fukuoka A
    ChemSusChem; 2010 Apr; 3(4):440-3. PubMed ID: 20198680
    [No Abstract]   [Full Text] [Related]  

  • 2. Hydrolysis of cellulose into glucose over carbons sulfonated at elevated temperatures.
    Pang J; Wang A; Zheng M; Zhang T
    Chem Commun (Camb); 2010 Oct; 46(37):6935-7. PubMed ID: 20730212
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chemo-microbial conversion of cellulose into polyhydroxybutyrate through ruthenium-catalyzed hydrolysis of cellulose into glucose.
    Matsumoto K; Kobayashi H; Ikeda K; Komanoya T; Fukuoka A; Taguchi S
    Bioresour Technol; 2011 Feb; 102(3):3564-7. PubMed ID: 20947345
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transfer hydrogenation of cellulose to sugar alcohols over supported ruthenium catalysts.
    Kobayashi H; Matsuhashi H; Komanoya T; Hara K; Fukuoka A
    Chem Commun (Camb); 2011 Feb; 47(8):2366-8. PubMed ID: 21161096
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Weak-acid sites catalyze the hydrolysis of crystalline cellulose to glucose in water: importance of post-synthetic functionalization of the carbon surface.
    To AT; Chung PW; Katz A
    Angew Chem Int Ed Engl; 2015 Sep; 54(38):11050-3. PubMed ID: 26276901
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cellulose conversion into polyols catalyzed by reversibly formed acids and supported ruthenium clusters in hot water.
    Luo C; Wang S; Liu H
    Angew Chem Int Ed Engl; 2007; 46(40):7636-9. PubMed ID: 17763479
    [No Abstract]   [Full Text] [Related]  

  • 7. Active carbon-ceramic sphere as support of ruthenium catalysts for catalytic wet air oxidation (CWAO) of resin effluent.
    Liu WM; Hu YQ; Tu ST
    J Hazard Mater; 2010 Jul; 179(1-3):545-51. PubMed ID: 20362394
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Oxygen evolution at functionalized carbon surfaces: a strategy for immobilization of molecular water oxidation catalysts.
    Tong L; Göthelid M; Sun L
    Chem Commun (Camb); 2012 Oct; 48(80):10025-7. PubMed ID: 22945420
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A new 3D mesoporous carbon replicated from commercial silica as a catalyst support for direct conversion of cellulose into ethylene glycol.
    Zhang Y; Wang A; Zhang T
    Chem Commun (Camb); 2010 Feb; 46(6):862-4. PubMed ID: 20107631
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Efficient catalytic conversion of concentrated cellulose feeds to hexitols with heteropoly acids and Ru on carbon.
    Geboers J; Van de Vyver S; Carpentier K; de Blochouse K; Jacobs P; Sels B
    Chem Commun (Camb); 2010 May; 46(20):3577-9. PubMed ID: 20376382
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mesoporous silica-supported catalysts for metathesis: application to a circulating flow reactor.
    Lim J; Seong Lee S; Ying JY
    Chem Commun (Camb); 2010 Feb; 46(5):806-8. PubMed ID: 20087527
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Heteropoly acids as efficient acid catalysts in the one-step conversion of cellulose to sugar alcohols.
    Palkovits R; Tajvidi K; Ruppert AM; Procelewska J
    Chem Commun (Camb); 2011 Jan; 47(1):576-8. PubMed ID: 21103493
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Conversion of cellulose and cellobiose into sorbitol catalyzed by ruthenium supported on a polyoxometalate/metal-organic framework hybrid.
    Chen J; Wang S; Huang J; Chen L; Ma L; Huang X
    ChemSusChem; 2013 Aug; 6(8):1545-55. PubMed ID: 23619979
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hydrolysis of ionic cellulose to glucose.
    Vo HT; Widyaya VT; Jae J; Kim HS; Lee H
    Bioresour Technol; 2014 Sep; 167():484-9. PubMed ID: 25011079
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Study on the pyrolysis of cellulose for bio-oil with mesoporous molecular sieve catalysts.
    Yu FW; Ji DX; Nie Y; Luo Y; Huang CJ; Ji JB
    Appl Biochem Biotechnol; 2012 Sep; 168(1):174-82. PubMed ID: 21976150
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chiral nematic mesoporous carbon derived from nanocrystalline cellulose.
    Shopsowitz KE; Hamad WY; MacLachlan MJ
    Angew Chem Int Ed Engl; 2011 Nov; 50(46):10991-5. PubMed ID: 21954149
    [No Abstract]   [Full Text] [Related]  

  • 17. Characterization of a spent Ru/C catalyst after gasification of biomass in supercritical water.
    Wambach J; Schubert M; Döbeli M; Vogel F
    Chimia (Aarau); 2012; 66(9):706-11. PubMed ID: 23211730
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mesoporous zeolite-supported ruthenium nanoparticles as highly selective Fischer-Tropsch catalysts for the production of C5-C11 isoparaffins.
    Kang J; Cheng K; Zhang L; Zhang Q; Ding J; Hua W; Lou Y; Zhai Q; Wang Y
    Angew Chem Int Ed Engl; 2011 May; 50(22):5200-3. PubMed ID: 21520373
    [No Abstract]   [Full Text] [Related]  

  • 19. Glucose- and cellulose-derived Ni/C-SO3H catalysts for liquid phase phenol hydrodeoxygenation.
    Kasakov S; Zhao C; Baráth E; Chase ZA; Fulton JL; Camaioni DM; Vjunov A; Shi H; Lercher JA
    Chemistry; 2015 Jan; 21(4):1567-77. PubMed ID: 25431188
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Production of biohydrogen by aqueous phase reforming of polyols over platinum catalysts supported on three-dimensionally bimodal mesoporous carbon.
    Park HJ; Kim HD; Kim TW; Jeong KE; Chae HJ; Jeong SY; Chung YM; Park YK; Kim CU
    ChemSusChem; 2012 Apr; 5(4):629-33. PubMed ID: 22415941
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.