BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 20198680)

  • 21. One-step conversion of cellobiose to C6-alcohols using a ruthenium nanocluster catalyst.
    Yan N; Zhao C; Luo C; Dyson PJ; Liu H; Kou Y
    J Am Chem Soc; 2006 Jul; 128(27):8714-5. PubMed ID: 16819849
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Carbon-supported ruthenium nanoparticles stabilized by methylated cyclodextrins: a new family of heterogeneous catalysts for the gas-phase hydrogenation of arenes.
    Denicourt-Nowicki A; Roucoux A; Wyrwalski F; Kania N; Monflier E; Ponchel A
    Chemistry; 2008; 14(27):8090-3. PubMed ID: 18663710
    [No Abstract]   [Full Text] [Related]  

  • 23. Conversion of cellulose into isosorbide over bifunctional ruthenium nanoparticles supported on niobium phosphate.
    Sun P; Long X; He H; Xia C; Li F
    ChemSusChem; 2013 Nov; 6(11):2190-7. PubMed ID: 24115374
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Enzyme catalytic membrane based on a hybrid mesoporous membrane.
    Fu W; Yamaguchi A; Kaneda H; Teramae N
    Chem Commun (Camb); 2008 Feb; (7):853-5. PubMed ID: 18253526
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Aqueous-phase Fischer-Tropsch synthesis with a ruthenium nanocluster catalyst.
    Xiao CX; Cai ZP; Wang T; Kou Y; Yan N
    Angew Chem Int Ed Engl; 2008; 47(4):746-9. PubMed ID: 18067111
    [No Abstract]   [Full Text] [Related]  

  • 26. Glucose production from saccharides using layered transition metal oxide and exfoliated nanosheets as a water-tolerant solid acid catalyst.
    Takagaki A; Tagusagawa C; Domen K
    Chem Commun (Camb); 2008 Nov; (42):5363-5. PubMed ID: 18985211
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Sn-doped hydroxylated MgF₂ catalysts for the fast and selective saccharification of cellulose to glucose.
    Wuttke S; Negoi A; Gheorghe N; Kuncser V; Kemnitz E; Parvulescu V; Coman SM
    ChemSusChem; 2012 Sep; 5(9):1708-11. PubMed ID: 22890984
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Ru-based oxidation catalysis.
    Pagliaro M; Campestrini S; Ciriminna R
    Chem Soc Rev; 2005 Oct; 34(10):837-45. PubMed ID: 16172673
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Hydrolysis kinetics characteristic of recycled fiber in subcritical water.
    Wang Y; Wan J; Ma Y; Huang M
    Bioresour Technol; 2012 Feb; 105():152-9. PubMed ID: 22178492
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Surface catalysis of water oxidation by the blue ruthenium dimer.
    Jurss JW; Concepcion JC; Norris MR; Templeton JL; Meyer TJ
    Inorg Chem; 2010 May; 49(9):3980-2. PubMed ID: 20377256
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Activation of crystalline cellulose to cellulose III(I) results in efficient hydrolysis by cellobiohydrolase.
    Igarashi K; Wada M; Samejima M
    FEBS J; 2007 Apr; 274(7):1785-92. PubMed ID: 17319934
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The oxidation of water by cerium(IV) catalysed by nanoparticulate RuO2 on mesoporous silica.
    King NC; Dickinson C; Zhou W; Bruce DW
    Dalton Trans; 2005 Mar; (6):1027-32. PubMed ID: 15739004
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Mass spectrometric study of glucose and cellobiose produced during enzymatic hydrolysis of alpha-cellulose extracted from oak late-wood annual rings.
    Sensuła BM; Derrick PJ; Bickerton JC; Pazdur A
    Rapid Commun Mass Spectrom; 2009 Jul; 23(13):2070-4. PubMed ID: 19504493
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Solid acid and microwave-assisted hydrolysis of cellulose in ionic liquid.
    Zhang Z; Zhao ZK
    Carbohydr Res; 2009 Oct; 344(15):2069-72. PubMed ID: 19703684
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Chemical synthesis of lactic acid from cellulose catalysed by lead(II) ions in water.
    Wang Y; Deng W; Wang B; Zhang Q; Wan X; Tang Z; Wang Y; Zhu C; Cao Z; Wang G; Wan H
    Nat Commun; 2013; 4():2141. PubMed ID: 23846730
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Sustainable green catalysis by supported metal nanoparticles.
    Fukuoka A; Dhepe PL
    Chem Rec; 2009; 9(4):224-35. PubMed ID: 19701957
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Phase change of nickel phosphide catalysts in the conversion of cellulose into sorbitol.
    Yang P; Kobayashi H; Hara K; Fukuoka A
    ChemSusChem; 2012 May; 5(5):920-6. PubMed ID: 22550035
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Conversion of cellulose to hexitols catalyzed by ionic liquid-stabilized ruthenium nanoparticles and a reversible binding agent.
    Zhu Y; Kong ZN; Stubbs LP; Lin H; Shen S; Anslyn EV; Maguire JA
    ChemSusChem; 2010; 3(1):67-70. PubMed ID: 20024980
    [No Abstract]   [Full Text] [Related]  

  • 39. Structure and catalysis of cellulose-derived amorphous carbon bearing SO3H groups.
    Fukuhara K; Nakajima K; Kitano M; Kato H; Hayashi S; Hara M
    ChemSusChem; 2011 Jun; 4(6):778-84. PubMed ID: 21595046
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The intrinsic kinetics and heats of reactions for cellulose pyrolysis and char formation.
    Cho J; Davis JM; Huber GW
    ChemSusChem; 2010 Oct; 3(10):1162-5. PubMed ID: 20715047
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.