These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 20198691)

  • 1. Modification of titanium alloy surfaces for percutaneous implants by covalently attaching laminin.
    Gordon DJ; Bhagawati DD; Pendegrass CJ; Middleton CA; Blunn GW
    J Biomed Mater Res A; 2010 Aug; 94(2):586-93. PubMed ID: 20198691
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spark plasma sintering synthesis of porous nanocrystalline titanium alloys for biomedical applications.
    Nicula R; Lüthen F; Stir M; Nebe B; Burkel E
    Biomol Eng; 2007 Nov; 24(5):564-7. PubMed ID: 17869173
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thermal and chemical modification of titanium-aluminum-vanadium implant materials: effects on surface properties, glycoprotein adsorption, and MG63 cell attachment.
    MacDonald DE; Rapuano BE; Deo N; Stranick M; Somasundaran P; Boskey AL
    Biomaterials; 2004 Jul; 25(16):3135-46. PubMed ID: 14980408
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nanotextured titanium surfaces for enhancing skin growth on transcutaneous osseointegrated devices.
    Puckett SD; Lee PP; Ciombor DM; Aaron RK; Webster TJ
    Acta Biomater; 2010 Jun; 6(6):2352-62. PubMed ID: 20005310
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sealing the skin barrier around transcutaneous implants: in vitro study of keratinocyte proliferation and adhesion in response to surface modifications of titanium alloy.
    Pendegrass CJ; Gordon D; Middleton CA; Sun SN; Blunn GW
    J Bone Joint Surg Br; 2008 Jan; 90(1):114-21. PubMed ID: 18160512
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Protein adsorption on titanium surfaces and their effect on osteoblast attachment.
    Yang Y; Cavin R; Ong JL
    J Biomed Mater Res A; 2003 Oct; 67(1):344-9. PubMed ID: 14517894
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Surface mechanical properties, corrosion resistance, and cytocompatibility of nitrogen plasma-implanted nickel-titanium alloys: a comparative study with commonly used medical grade materials.
    Yeung KW; Poon RW; Chu PK; Chung CY; Liu XY; Lu WW; Chan D; Chan SC; Luk KD; Cheung KM
    J Biomed Mater Res A; 2007 Aug; 82(2):403-14. PubMed ID: 17295246
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Surface characteristics and protein adsorption on combinatorial binary Ti-M (Cr, Al, Ni) and Al-M (Ta, Zr) library films.
    Bai Z; Filiaggi MJ; Sanderson RJ; Lohstreter LB; McArthur MA; Dahn JR
    J Biomed Mater Res A; 2010 Feb; 92(2):521-32. PubMed ID: 19235218
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interfacial kinetics of titanium- and cobalt-based implant alloys in human serum: metal release and biofilm formation.
    Hallab NJ; Skipor A; Jacobs JJ
    J Biomed Mater Res A; 2003 Jun; 65(3):311-8. PubMed ID: 12746877
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of calcium ion implantation on human bone cell interaction with titanium.
    Nayab SN; Jones FH; Olsen I
    Biomaterials; 2005 Aug; 26(23):4717-27. PubMed ID: 15763251
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Strengthening mechanisms in Ti-Nb-Zr-Ta and Ti-Mo-Zr-Fe orthopaedic alloys.
    Banerjee R; Nag S; Stechschulte J; Fraser HL
    Biomaterials; 2004 Aug; 25(17):3413-9. PubMed ID: 15020114
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of a niobium-containing titanium alloy on osteoblast behavior in culture.
    Shapira L; Klinger A; Tadir A; Wilensky A; Halabi A
    Clin Oral Implants Res; 2009 Jun; 20(6):578-82. PubMed ID: 19530314
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nitric acid passivation does not affect in vitro biocompatibility of titanium.
    Faria AC; Beloti MM; Rosa AL
    Int J Oral Maxillofac Implants; 2003; 18(6):820-5. PubMed ID: 14696657
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The enhanced characteristics of osteoblast adhesion to photofunctionalized nanoscale TiO2 layers on biomaterials surfaces.
    Miyauchi T; Yamada M; Yamamoto A; Iwasa F; Suzawa T; Kamijo R; Baba K; Ogawa T
    Biomaterials; 2010 May; 31(14):3827-39. PubMed ID: 20153521
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Monitoring of titanium base alloys-biofluids interface.
    Popa MV; Demetrescu I; Suh SH; Vasilescu E; Drob P; Ionita D; Vasilescu C
    Bioelectrochemistry; 2007 Nov; 71(2):126-34. PubMed ID: 17409027
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phases in titanium alloys.
    Williams D
    Med Device Technol; 2005 Oct; 16(8):9-11. PubMed ID: 16355962
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effect of surface chemistry modification of titanium alloy on signalling pathways in human osteoblasts.
    Zreiqat H; Valenzuela SM; Nissan BB; Roest R; Knabe C; Radlanski RJ; Renz H; Evans PJ
    Biomaterials; 2005 Dec; 26(36):7579-86. PubMed ID: 16002135
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of passivation treatments on titanium alloy with nanometric scale roughness and induced changes in fibroblast initial adhesion evaluated by a cytodetacher.
    Wang CC; Hsu YC; Su FC; Lu SC; Lee TM
    J Biomed Mater Res A; 2009 Feb; 88(2):370-83. PubMed ID: 18306287
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of metal release from various metallic biomaterials in vitro.
    Okazaki Y; Gotoh E
    Biomaterials; 2005 Jan; 26(1):11-21. PubMed ID: 15193877
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Osteoblast response and osseointegration of a Ti-6Al-4V alloy implant incorporating strontium.
    Park JW; Kim HK; Kim YJ; Jang JH; Song H; Hanawa T
    Acta Biomater; 2010 Jul; 6(7):2843-51. PubMed ID: 20085830
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.