BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 20199014)

  • 1. Control of femtosecond thin-flap LASIK using OCT in human donor eyes.
    Kermani O; Will F; Massow O; Oberheide U; Lubatschowski H
    J Refract Surg; 2010 Jan; 26(1):57-60. PubMed ID: 20199014
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Real-time optical coherence tomography-guided femtosecond laser sub-Bowman keratomileusis on human donor eyes.
    Kermani O; Fabian W; Lubatschowski H
    Am J Ophthalmol; 2008 Jul; 146(1):42-5. PubMed ID: 18439562
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Real-time monitoring of a femtosecond laser in Sub-Bowman Keratomileusis on human donor eyes using OCT].
    Kermani O; Oberheide U; Will GF; Massow O; Lubatschowski H
    Klin Monbl Augenheilkd; 2009 Dec; 226(12):965-9. PubMed ID: 20108190
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Flap thickness reproducibility in laser in situ keratomileusis with a femtosecond laser: optical coherence tomography measurement.
    Kim JH; Lee D; Rhee KI
    J Cataract Refract Surg; 2008 Jan; 34(1):132-6. PubMed ID: 18165093
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Continuous monitoring of corneal thickness changes during LASIK with online optical coherence pachymetry.
    Wirbelauer C; Pham DT
    J Cataract Refract Surg; 2004 Dec; 30(12):2559-68. PubMed ID: 15617925
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thresholds for interface haze formation after thin-flap femtosecond laser in situ keratomileusis for myopia.
    Rocha KM; Kagan R; Smith SD; Krueger RR
    Am J Ophthalmol; 2009 Jun; 147(6):966-72, 972.e1. PubMed ID: 19327748
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Corneal architecture of femtosecond laser and microkeratome flaps imaged by anterior segment optical coherence tomography.
    von Jagow B; Kohnen T
    J Cataract Refract Surg; 2009 Jan; 35(1):35-41. PubMed ID: 19101422
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In vivo real-time intraocular pressure variations during LASIK flap creation.
    Chaurasia SS; Luengo Gimeno F; Tan K; Yu S; Tan DT; Beuerman RW; Mehta JS
    Invest Ophthalmol Vis Sci; 2010 Sep; 51(9):4641-5. PubMed ID: 20393112
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Measurement of corneal curvature change after mechanical laser in situ keratomileusis flap creation and femtosecond laser flap creation.
    Ortiz D; Alió JL; Piñero D
    J Cataract Refract Surg; 2008 Feb; 34(2):238-42. PubMed ID: 18242446
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of submicrojoule femtosecond laser corneal tissue dissection.
    Binder PS; Sarayba M; Ignacio T; Juhasz T; Kurtz R
    J Cataract Refract Surg; 2008 Jan; 34(1):146-52. PubMed ID: 18165095
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Complications of LASIK flaps made by the IntraLase 15- and 30-kHz femtosecond lasers.
    Haft P; Yoo SH; Kymionis GD; Ide T; O'Brien TP; Culbertson WW
    J Refract Surg; 2009 Nov; 25(11):979-84. PubMed ID: 19921765
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Monitoring corneal structures with slitlamp-adapted optical coherence tomography in laser in situ keratomileusis.
    Wirbelauer C; Pham DT
    J Cataract Refract Surg; 2004 Sep; 30(9):1851-60. PubMed ID: 15342046
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of the flaps made by femtosecond laser and automated keratomes for sub-bowman keratomileusis.
    Zhai CB; Tian L; Zhou YH; Zhang QW; Zhang J
    Chin Med J (Engl); 2013 Jul; 126(13):2440-4. PubMed ID: 23823815
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Accuracy and reproducibility of artemis central flap thickness and visual outcomes of LASIK with the Carl Zeiss Meditec VisuMax femtosecond laser and MEL 80 excimer laser platforms.
    Reinstein DZ; Archer TJ; Gobbe M; Johnson N
    J Refract Surg; 2010 Feb; 26(2):107-19. PubMed ID: 20163075
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Femtosecond laser-assisted corneal flap cuts: morphology, accuracy, and histopathology.
    Holzer MP; Rabsilber TM; Auffarth GU
    Invest Ophthalmol Vis Sci; 2006 Jul; 47(7):2828-31. PubMed ID: 16799021
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Second femtosecond laser pass for incomplete laser in situ keratomileusis flaps caused by suction loss.
    Ide T; Yoo SH; Kymionis GD; Haft P; O'Brien TP
    J Cataract Refract Surg; 2009 Jan; 35(1):153-7. PubMed ID: 19101438
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of original flap creation method on incidence of epithelial ingrowth after LASIK retreatment.
    Letko E; Price MO; Price FW
    J Refract Surg; 2009 Nov; 25(11):1039-41. PubMed ID: 19921773
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Femtosecond laser versus mechanical microkeratome for LASIK: a randomized controlled study.
    Patel SV; Maguire LJ; McLaren JW; Hodge DO; Bourne WM
    Ophthalmology; 2007 Aug; 114(8):1482-90. PubMed ID: 17350688
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Predictive factors of femtosecond laser flap thickness measured by online optical coherence pachymetry subtraction in sub-Bowman keratomileusis.
    Pfaeffl WA; Kunze M; Zenk U; Pfaeffl MB; Schuster T; Lohmann C
    J Cataract Refract Surg; 2008 Nov; 34(11):1872-80. PubMed ID: 19006732
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dry eyes and corneal sensation after laser in situ keratomileusis with femtosecond laser flap creation Effect of hinge position, hinge angle, and flap thickness.
    Mian SI; Li AY; Dutta S; Musch DC; Shtein RM
    J Cataract Refract Surg; 2009 Dec; 35(12):2092-8. PubMed ID: 19969213
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.