BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

336 related articles for article (PubMed ID: 20199027)

  • 21. Computational de novo design of a self-assembling peptide with predefined structure.
    Kaltofen S; Li C; Huang PS; Serpell LC; Barth A; André I
    J Mol Biol; 2015 Jan; 427(2):550-62. PubMed ID: 25498388
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Hydrogel and Organogel Formation by Hierarchical Self-Assembly of Cyclic Peptides Nanotubes.
    Shaikh H; Rho JY; Macdougall LJ; Gurnani P; Lunn AM; Yang J; Huband S; Mansfield EDH; Peltier R; Perrier S
    Chemistry; 2018 Dec; 24(71):19066-19074. PubMed ID: 30338575
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Stability and growth mechanism of self-assembling putative antifreeze cyclic peptides.
    Brotzakis ZF; Gehre M; Voets IK; Bolhuis PG
    Phys Chem Chem Phys; 2017 Jul; 19(29):19032-19042. PubMed ID: 28702528
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Unraveling the mechanism of nanotube formation by chiral self-assembly of amphiphiles.
    Ziserman L; Lee HY; Raghavan SR; Mor A; Danino D
    J Am Chem Soc; 2011 Mar; 133(8):2511-7. PubMed ID: 21244023
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Solvent Controlled Structural Transition of KI4K Self-Assemblies: from Nanotubes to Nanofibrils.
    Zhao Y; Deng L; Wang J; Xu H; Lu JR
    Langmuir; 2015 Dec; 31(47):12975-83. PubMed ID: 26540520
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Triphenylalanine peptides self-assemble into nanospheres and nanorods that are different from the nanovesicles and nanotubes formed by diphenylalanine peptides.
    Guo C; Luo Y; Zhou R; Wei G
    Nanoscale; 2014 Mar; 6(5):2800-11. PubMed ID: 24468750
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Tuning the self-assembly of short peptides via sequence variations.
    Zhao Y; Wang J; Deng L; Zhou P; Wang S; Wang Y; Xu H; Lu JR
    Langmuir; 2013 Nov; 29(44):13457-64. PubMed ID: 24090051
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Low concentration structural dynamics of lanreotide and somatostatin-14.
    Hernández B; Coïc YM; Baron B; Kruglik SG; Pflüger F; Cohen R; Carelli C; Ghomi M
    Biopolymers; 2014 Oct; 101(10):1019-28. PubMed ID: 24729416
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Self-assembly of Peptide nanotubes in an organic solvent.
    Krysmann MJ; Castelletto V; McKendrick JE; Clifton LA; W Hamley I; Harris PJ; King SM
    Langmuir; 2008 Aug; 24(15):8158-62. PubMed ID: 18572891
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Charge transport in vertically aligned, self-assembled peptide nanotube junctions.
    Mizrahi M; Zakrassov A; Lerner-Yardeni J; Ashkenasy N
    Nanoscale; 2012 Jan; 4(2):518-24. PubMed ID: 22116517
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Conformation Dependence of Diphenylalanine Self-Assembly Structures and Dynamics: Insights from Hybrid-Resolution Simulations.
    Xiong Q; Jiang Y; Cai X; Yang F; Li Z; Han W
    ACS Nano; 2019 Apr; 13(4):4455-4468. PubMed ID: 30869864
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Peptide Self-Assemblies for Drug Delivery.
    Leite DM; Barbu E; Pilkington GJ; Lalatsa A
    Curr Top Med Chem; 2015; 15(22):2277-89. PubMed ID: 26043734
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Mechanical reinforcement of polymeric fibers through peptide nanotube incorporation.
    Rubin DJ; Nia HT; Desire T; Nguyen PQ; Gevelber M; Ortiz C; Joshi NS
    Biomacromolecules; 2013 Oct; 14(10):3370-5. PubMed ID: 24070499
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Artificial peptide-nanospheres self-assembled from three-way junctions of beta-sheet-forming peptides.
    Matsuura K; Murasato K; Kimizuka N
    J Am Chem Soc; 2005 Jul; 127(29):10148-9. PubMed ID: 16028908
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Peptide nanotube nematic phase.
    Bucak S; Cenker C; Nasir I; Olsson U; Zackrisson M
    Langmuir; 2009 Apr; 25(8):4262-5. PubMed ID: 19275132
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Experimental observation of double-walled peptide nanotubes and monodispersity modeling of the number of walls.
    Gobeaux F; Fay N; Tarabout C; Meneau F; Mériadec C; Delvaux C; Cintrat JC; Valéry C; Artzner F; Paternostre M
    Langmuir; 2013 Feb; 29(8):2739-45. PubMed ID: 23368945
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Morphology control between twisted ribbon, helical ribbon, and nanotube self-assemblies with his-containing helical peptides in response to pH change.
    Uesaka A; Ueda M; Makino A; Imai T; Sugiyama J; Kimura S
    Langmuir; 2014 Feb; 30(4):1022-8. PubMed ID: 24410257
    [TBL] [Abstract][Full Text] [Related]  

  • 38. How does growth hormone releasing hexapeptide self-assemble in nanotubes?
    Santana H; Avila CL; Cabrera I; Páez R; Falcón V; Pessoa A; Ventosa N; Veciana J; Itri R; Barbosa LR
    Soft Matter; 2014 Dec; 10(46):9260-9. PubMed ID: 25325399
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Peptide mimics by linear arylamides: a structural and functional diversity test.
    Li ZT; Hou JL; Li C
    Acc Chem Res; 2008 Oct; 41(10):1343-53. PubMed ID: 18361513
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Membrane-targeted self-assembling cyclic peptide nanotubes.
    Rodríguez-Vázquez N; Ozores HL; Guerra A; González-Freire E; Fuertes A; Panciera M; Priegue JM; Outeiral J; Montenegro J; Garcia-Fandino R; Amorin M; Granja JR
    Curr Top Med Chem; 2014; 14(23):2647-61. PubMed ID: 25515753
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.