These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 20199378)

  • 21. Wireless Power Transmission for Implantable Medical Devices Using Focused Ultrasound and a Miniaturized 1-3 Piezoelectric Composite Receiving Transducer.
    Yi X; Zheng W; Cao H; Wang S; Feng X; Yang Z
    IEEE Trans Ultrason Ferroelectr Freq Control; 2021 Dec; 68(12):3592-3598. PubMed ID: 34357865
    [TBL] [Abstract][Full Text] [Related]  

  • 22. High Specific Power Dual-Metal-Ion Rechargeable Microbatteries Based on LiMn
    Trócoli R; Morata A; Fehse M; Stchakovsky M; Sepúlveda A; Tarancón A
    ACS Appl Mater Interfaces; 2017 Sep; 9(38):32713-32719. PubMed ID: 28885817
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A Miniaturized 0.78-mW/cm2 Autonomous Thermoelectric Energy-Harvesting Platform for Biomedical Sensors.
    Rozgic D; Markovic D
    IEEE Trans Biomed Circuits Syst; 2017 Aug; 11(4):773-783. PubMed ID: 28541912
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Laser micromachining.
    Kearsley A
    Med Device Technol; 2003 Mar; 14(2):18-9. PubMed ID: 12698693
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Microbial fuel cell as power supply for implantable medical devices: a novel configuration design for simulating colonic environment.
    Dong K; Jia B; Yu C; Dong W; Du F; Liu H
    Biosens Bioelectron; 2013 Mar; 41():916-9. PubMed ID: 23122754
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Biocompatible Symmetric Na-Ion Microbatteries with Sphere-in-Network Heteronanomat Electrodes Realizing High Reliability and High Energy Density for Implantable Bioelectronics.
    Zhang G; Geng F; Zhao T; Zhou F; Zhang N; Zhang S; Deng C
    ACS Appl Mater Interfaces; 2018 Dec; 10(49):42268-42278. PubMed ID: 30457330
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Microtechnology in modern health care.
    Detemple P; Ehrfeld W; Freimuth H; Pommersheim R; Wagler P
    Med Device Technol; 1998 Nov; 9(9):18-25. PubMed ID: 10344880
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Thin-film passive microcomponents for improved circuit performance.
    Christian KD
    Med Device Technol; 2004 Nov; 15(9):35-7. PubMed ID: 16231787
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A package design technique for size reduction of implantable bioelectronic systems.
    Soma M
    IEEE Trans Biomed Eng; 1990 May; 37(5):482-8. PubMed ID: 2345004
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Science and technology of biocompatible thin films for implantable biomedical devices.
    Li W; Kabius B; Auciello O
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():6237-42. PubMed ID: 21097345
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Stress-Actuated Spiral Microelectrode for High-Performance Lithium-Ion Microbatteries.
    Tang H; Karnaushenko DD; Neu V; Gabler F; Wang S; Liu L; Li Y; Wang J; Zhu M; Schmidt OG
    Small; 2020 Sep; 16(35):e2002410. PubMed ID: 32700453
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Wireless power and data transmission system for a micro implantable intraocular vision aid.
    Hijazi N; Krisch I; Hosticka BJ
    Biomed Tech (Berl); 2002; 47 Suppl 1 Pt 1():174-5. PubMed ID: 12451807
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Implantable microsystems for monitoring and neural rehabilitation, part I.
    Stieglitz T
    Med Device Technol; 2001 Dec; 12(10):16-8, 20-1. PubMed ID: 15966139
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Flat Monolayer Graphene Cathodes for Li-Oxygen Microbatteries.
    Oh D; Lara E; Arellano N; Shin YC; Medina P; Kim J; Ta T; Akca E; Ozgit-Akgun C; Demirci G; Kim HC; Han SJ; Maune H; Samant MG
    ACS Appl Mater Interfaces; 2019 Jan; 11(1):489-498. PubMed ID: 30525380
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Long-term in vivo performance of novel ultrasound powered implantable devices.
    Kang C; Chang TC; Vo J; Charthad J; Weber M; Arbabian A; Vasudevan S
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():2985-2988. PubMed ID: 30441025
    [TBL] [Abstract][Full Text] [Related]  

  • 36. In Vivo Demonstration of Addressable Microstimulators Powered by Rectification of Epidermically Applied Currents for Miniaturized Neuroprostheses.
    Becerra-Fajardo L; Ivorra A
    PLoS One; 2015; 10(7):e0131666. PubMed ID: 26147771
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Miniaturized tools and devices for bioanalytical applications: an overview.
    Chudy M; Grabowska I; Ciosek P; Filipowicz-Szymanska A; Stadnik D; Wyzkiewicz I; Jedrych E; Juchniewicz M; Skolimowski M; Ziolkowska K; Kwapiszewski R
    Anal Bioanal Chem; 2009 Oct; 395(3):647-68. PubMed ID: 19649753
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Advances on Microsized On-Chip Lithium-Ion Batteries.
    Liu L; Weng Q; Lu X; Sun X; Zhang L; Schmidt OG
    Small; 2017 Dec; 13(45):. PubMed ID: 28960908
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Laser micro machining of medical devices.
    Rausch Y
    Med Device Technol; 2009; 20(3):29-33. PubMed ID: 19626953
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Advances and Future Challenges in Printed Batteries.
    Sousa RE; Costa CM; Lanceros-Méndez S
    ChemSusChem; 2015 Nov; 8(21):3539-55. PubMed ID: 26404647
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.