These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 20199578)

  • 41. GSF2 deletion increases lactic acid production by alleviating glucose repression in Saccharomyces cerevisiae.
    Baek SH; Kwon EY; Kim SY; Hahn JS
    Sci Rep; 2016 Oct; 6():34812. PubMed ID: 27708428
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Functional domains of yeast hexokinase 2.
    Peláez R; Herrero P; Moreno F
    Biochem J; 2010 Nov; 432(1):181-90. PubMed ID: 20815814
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The growth and signalling defects of the ggs1 (fdp1/byp1) deletion mutant on glucose are suppressed by a deletion of the gene encoding hexokinase PII.
    Hohmann S; Neves MJ; de Koning W; Alijo R; Ramos J; Thevelein JM
    Curr Genet; 1993; 23(4):281-9. PubMed ID: 8467527
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Comparative proteome analysis of Saccharomyces cerevisiae grown in chemostat cultures limited for glucose or ethanol.
    Kolkman A; Olsthoorn MM; Heeremans CE; Heck AJ; Slijper M
    Mol Cell Proteomics; 2005 Jan; 4(1):1-11. PubMed ID: 15502163
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Nutritional requirements of the BY series of Saccharomyces cerevisiae strains for optimum growth.
    Hanscho M; Ruckerbauer DE; Chauhan N; Hofbauer HF; Krahulec S; Nidetzky B; Kohlwein SD; Zanghellini J; Natter K
    FEMS Yeast Res; 2012 Nov; 12(7):796-808. PubMed ID: 22780918
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Comparison of the metabolic response to over-production of p-coumaric acid in two yeast strains.
    Rodriguez A; Chen Y; Khoomrung S; Özdemir E; Borodina I; Nielsen J
    Metab Eng; 2017 Nov; 44():265-272. PubMed ID: 29101089
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Lack of HXK2 induces localization of active Ras in mitochondria and triggers apoptosis in the yeast Saccharomyces cerevisiae.
    Amigoni L; Martegani E; Colombo S
    Oxid Med Cell Longev; 2013; 2013():678473. PubMed ID: 24089630
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Different levels of catabolite repression optimize growth in stable and variable environments.
    New AM; Cerulus B; Govers SK; Perez-Samper G; Zhu B; Boogmans S; Xavier JB; Verstrepen KJ
    PLoS Biol; 2014 Jan; 12(1):e1001764. PubMed ID: 24453942
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Aerobic growth physiology of Saccharomyces cerevisiae on sucrose is strain-dependent.
    Rodrigues CIS; Wahl A; Gombert AK
    FEMS Yeast Res; 2021 Apr; 21(3):. PubMed ID: 33826723
    [TBL] [Abstract][Full Text] [Related]  

  • 50. High cell density culture with S. cerevisiae CEN.PK113-5D for IL-1β production: optimization, modeling, and physiological aspects.
    Landi C; Paciello L; de Alteriis E; Brambilla L; Parascandola P
    Bioprocess Biosyst Eng; 2015 Feb; 38(2):251-61. PubMed ID: 25106469
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Effect of nutrient starvation on the cellular composition and metabolic capacity of Saccharomyces cerevisiae.
    Albers E; Larsson C; Andlid T; Walsh MC; Gustafsson L
    Appl Environ Microbiol; 2007 Aug; 73(15):4839-48. PubMed ID: 17545328
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Glucose signaling-mediated coordination of cell growth and cell cycle in Saccharomyces cerevisiae.
    Busti S; Coccetti P; Alberghina L; Vanoni M
    Sensors (Basel); 2010; 10(6):6195-240. PubMed ID: 22219709
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Hexokinase PII has a double cytosolic-nuclear localisation in Saccharomyces cerevisiae.
    Randez-Gil F; Herrero P; Sanz P; Prieto JA; Moreno F
    FEBS Lett; 1998 Apr; 425(3):475-8. PubMed ID: 9563516
    [TBL] [Abstract][Full Text] [Related]  

  • 54. The integrated response of primary metabolites to gene deletions and the environment.
    Ewald JC; Matt T; Zamboni N
    Mol Biosyst; 2013 Mar; 9(3):440-6. PubMed ID: 23340584
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Physiological studies in aerobic batch cultivations of Saccharomyces cerevisiae strains harboring the MEL1 gene.
    Ostergaard S; Roca C; Rønnow B; Nielsen J; Olsson L
    Biotechnol Bioeng; 2000 May; 68(3):252-9. PubMed ID: 10745193
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Comparative proteome analysis of different Saccharomyces cerevisiae strains during growth on sucrose and glucose.
    Soares Rodrigues CI; den Ridder M; Pabst M; Gombert AK; Wahl SA
    Sci Rep; 2023 Feb; 13(1):2126. PubMed ID: 36746999
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Preparation of peptides from yeast cells for iTRAQ analysis.
    Simon ES
    Cold Spring Harb Protoc; 2011 Jun; 2011(6):670-5. PubMed ID: 21632784
    [No Abstract]   [Full Text] [Related]  

  • 58. Labeling yeast peptides with the iTRAQ reagent.
    Simon ES
    Cold Spring Harb Protoc; 2011 Jun; 2011(6):676-80. PubMed ID: 21632783
    [No Abstract]   [Full Text] [Related]  

  • 59. Isoelectric focusing of iTRAQ-labeled yeast.
    Simon ES
    Cold Spring Harb Protoc; 2011 Jun; 2011(6):686-94. PubMed ID: 21632781
    [No Abstract]   [Full Text] [Related]  

  • 60. A new model for the aerobic metabolism of yeast allows the detailed analysis of the metabolic regulation during glucose pulse.
    Kesten D; Kummer U; Sahle S; Hübner K
    Biophys Chem; 2015 Nov; 206():40-57. PubMed ID: 26176974
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.