These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 20199589)

  • 1. On integrating groundwater transport models with wireless sensor networks.
    Barnhart K; Urteaga I; Han Q; Jayasumana A; Illangasekare T
    Ground Water; 2010; 48(5):771-80. PubMed ID: 20199589
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Elderly persons' perception and acceptance of using wireless sensor networks to assist healthcare.
    Steele R; Lo A; Secombe C; Wong YK
    Int J Med Inform; 2009 Dec; 78(12):788-801. PubMed ID: 19717335
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development of an integrated wireless sensor network micro-environmental monitoring system.
    Cao X; Chen J; Zhang Y; Sun Y
    ISA Trans; 2008 Jul; 47(3):247-55. PubMed ID: 18355827
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A review of model applications for structured soils: a) Water flow and tracer transport.
    Köhne JM; Köhne S; Simůnek J
    J Contam Hydrol; 2009 Feb; 104(1-4):4-35. PubMed ID: 19012994
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Game-theoretic approach for improving cooperation in wireless multihop networks.
    Ng SK; Seah WK
    IEEE Trans Syst Man Cybern B Cybern; 2010 Jun; 40(3):559-74. PubMed ID: 20211801
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An integrated numerical and physical modeling system for an enhanced in situ bioremediation process.
    Huang YF; Huang GH; Wang GQ; Lin QG; Chakma A
    Environ Pollut; 2006 Dec; 144(3):872-85. PubMed ID: 16631288
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Groundwater modeling in integrated water resources management--visions for 2020.
    Refsgaard JC; Højberg AL; Møller I; Hansen M; Søndergaard V
    Ground Water; 2010; 48(5):633-48. PubMed ID: 19788560
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Energy-Efficient and Robust In-Network Inference in Wireless Sensor Networks.
    Zhao W; Liang Y
    IEEE Trans Cybern; 2015 Oct; 45(10):2105-18. PubMed ID: 25415997
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Performance and Challenges of Service-Oriented Architecture for Wireless Sensor Networks.
    Alshinina R; Elleithy K
    Sensors (Basel); 2017 Mar; 17(3):. PubMed ID: 28282896
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluation of groundwater flow patterns around a dual-screened groundwater circulation well.
    Johnson RL; Simon MA
    J Contam Hydrol; 2007 Aug; 93(1-4):188-202. PubMed ID: 17428573
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dynamic modeling of chemical fate and transport in multimedia environments at watershed scale-II: trichloroethylene test case.
    Luo Y; Gao Q; Yang X
    J Environ Manage; 2007 Apr; 83(1):56-65. PubMed ID: 16678337
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Filtration and transport of Bacillus subtilis spores and the F-RNA phage MS2 in a coarse alluvial gravel aquifer: implications in the estimation of setback distances.
    Pang L; Close M; Goltz M; Noonan M; Sinton L
    J Contam Hydrol; 2005 Apr; 77(3):165-94. PubMed ID: 15763354
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A hybrid artificial neural network-numerical model for ground water problems.
    Szidarovszky F; Coppola EA; Long J; Hall AD; Poulton MM
    Ground Water; 2007; 45(5):590-600. PubMed ID: 17760585
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nearest neighbor imputation using spatial-temporal correlations in wireless sensor networks.
    Li Y; Parker LE
    Inf Fusion; 2014 Jan; 15():64-79. PubMed ID: 28435414
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Large scale remote sensing for environmental monitoring of infrastructure.
    Whelan MJ; Fuchs MP; Janoyan KD
    J Environ Monit; 2008 Jul; 10(7):812-6. PubMed ID: 18688447
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of temporally variable groundwater flow conditions on point measurements and contaminant mass flux estimations.
    Rein A; Bauer S; Dietrich P; Beyer C
    J Contam Hydrol; 2009 Sep; 108(3-4):118-33. PubMed ID: 19682766
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Energy scavenging for long-term deployable wireless sensor networks.
    Mathúna CO; O'Donnell T; Martinez-Catala RV; Rohan J; O'Flynn B
    Talanta; 2008 May; 75(3):613-23. PubMed ID: 18585122
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interpolation of steady-state concentration data by inverse modeling.
    Schwede RL; Cirpka OA
    Ground Water; 2010; 48(4):569-79. PubMed ID: 20070381
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Meta-modeling of the pesticide fate model MACRO for groundwater exposure assessments using artificial neural networks.
    Stenemo F; Lindahl AM; Gärdenäs A; Jarvis N
    J Contam Hydrol; 2007 Aug; 93(1-4):270-83. PubMed ID: 17531347
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Wireless body sensor networks for health-monitoring applications.
    Hao Y; Foster R
    Physiol Meas; 2008 Nov; 29(11):R27-56. PubMed ID: 18843167
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.