BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

341 related articles for article (PubMed ID: 20199595)

  • 21. Differential regulation of the multiple flagellins in spirochetes.
    Li C; Sal M; Marko M; Charon NW
    J Bacteriol; 2010 May; 192(10):2596-603. PubMed ID: 20304988
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Flagellar biogenesis of Xanthomonas campestris requires the alternative sigma factors RpoN2 and FliA and is temporally regulated by FlhA, FlhB, and FlgM.
    Yang TC; Leu YW; Chang-Chien HC; Hu RM
    J Bacteriol; 2009 Apr; 191(7):2266-75. PubMed ID: 19136588
    [TBL] [Abstract][Full Text] [Related]  

  • 23. HP0958 is an essential motility gene in Helicobacter pylori.
    Ryan KA; Karim N; Worku M; Moore SA; Penn CW; O'Toole PW
    FEMS Microbiol Lett; 2005 Jul; 248(1):47-55. PubMed ID: 15946806
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Identification of the Helicobacter pylori anti-sigma28 factor.
    Colland F; Rain JC; Gounon P; Labigne A; Legrain P; De Reuse H
    Mol Microbiol; 2001 Jul; 41(2):477-87. PubMed ID: 11489132
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Basal Body Structures Differentially Affect Transcription of RpoN- and FliA-Dependent Flagellar Genes in Helicobacter pylori.
    Tsang J; Hoover TR
    J Bacteriol; 2015 Jun; 197(11):1921-30. PubMed ID: 25825427
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A multipartite interaction between Salmonella transcription factor sigma28 and its anti-sigma factor FlgM: implications for sigma28 holoenzyme destabilization through stepwise binding.
    Chadsey MS; Hughes KT
    J Mol Biol; 2001 Mar; 306(5):915-29. PubMed ID: 11237608
    [TBL] [Abstract][Full Text] [Related]  

  • 27. sigma28-dependent transcription in Salmonella enterica is independent of flagellar shearing.
    Rosu V; Hughes KT
    J Bacteriol; 2006 Jul; 188(14):5196-203. PubMed ID: 16816191
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Bacterial flagellin-specific chaperone FliS interacts with anti-sigma factor FlgM.
    Galeva A; Moroz N; Yoon YH; Hughes KT; Samatey FA; Kostyukova AS
    J Bacteriol; 2014 Mar; 196(6):1215-21. PubMed ID: 24415724
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Sensing structural intermediates in bacterial flagellar assembly by export of a negative regulator.
    Hughes KT; Gillen KL; Semon MJ; Karlinsey JE
    Science; 1993 Nov; 262(5137):1277-80. PubMed ID: 8235660
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Temperature-dependent regulation of Yersinia enterocolitica Class III flagellar genes.
    Kapatral V; Olson JW; Pepe JC; Miller VL; Minnich SA
    Mol Microbiol; 1996 Mar; 19(5):1061-71. PubMed ID: 8830263
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Analysis of flagellin gene expression in flagellar phase variants of Campylobacter jejuni 81116.
    Nuijten PJ; Márquez-Magaña L; van der Zeijst BA
    Antonie Van Leeuwenhoek; 1995; 67(4):377-83. PubMed ID: 7574555
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The flagellar-specific transcription factor, sigma28, is the Type III secretion chaperone for the flagellar-specific anti-sigma28 factor FlgM.
    Aldridge PD; Karlinsey JE; Aldridge C; Birchall C; Thompson D; Yagasaki J; Hughes KT
    Genes Dev; 2006 Aug; 20(16):2315-26. PubMed ID: 16912280
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The Vibrio cholerae FlgM homologue is an anti-sigma28 factor that is secreted through the sheathed polar flagellum.
    Correa NE; Barker JR; Klose KE
    J Bacteriol; 2004 Jul; 186(14):4613-9. PubMed ID: 15231794
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Functional characterization of the antagonistic flagellar late regulators FliA and FlgM of Helicobacter pylori and their effects on the H. pylori transcriptome.
    Josenhans C; Niehus E; Amersbach S; Hörster A; Betz C; Drescher B; Hughes KT; Suerbaum S
    Mol Microbiol; 2002 Jan; 43(2):307-22. PubMed ID: 11985711
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Deciphering bacterial flagellar gene regulatory networks in the genomic era.
    Smith TG; Hoover TR
    Adv Appl Microbiol; 2009; 67():257-95. PubMed ID: 19245942
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Molecular dissection of the flagellum-specific anti-sigma factor, FlgM, of Salmonella typhimurium.
    Iyoda S; Kutsukake K
    Mol Gen Genet; 1995 Dec; 249(4):417-24. PubMed ID: 8552046
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Functional characterization of flagellin glycosylation in Campylobacter jejuni 81-176.
    Ewing CP; Andreishcheva E; Guerry P
    J Bacteriol; 2009 Nov; 191(22):7086-93. PubMed ID: 19749047
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Secretion of virulence proteins from Campylobacter jejuni is dependent on a functional flagellar export apparatus.
    Konkel ME; Klena JD; Rivera-Amill V; Monteville MR; Biswas D; Raphael B; Mickelson J
    J Bacteriol; 2004 Jun; 186(11):3296-303. PubMed ID: 15150214
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Amino-terminal residues dictate the export efficiency of the Campylobacter jejuni filament proteins via the flagellum.
    Neal-McKinney JM; Christensen JE; Konkel ME
    Mol Microbiol; 2010 May; 76(4):918-31. PubMed ID: 20398207
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Excretion of the anti-sigma factor through a flagellar substructure couples flagellar gene expression with flagellar assembly in Salmonella typhimurium.
    Kutsukake K
    Mol Gen Genet; 1994 Jun; 243(6):605-12. PubMed ID: 8028576
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.