BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 20199624)

  • 1. Differential anatomical responses to elevated CO2 in saplings of four hardwood species.
    Watanabe Y; Satomura T; Sasa K; Funada R; Koike T
    Plant Cell Environ; 2010 Jul; 33(7):1101-11. PubMed ID: 20199624
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Flash-flood impacts cause changes in wood anatomy of Alnus glutinosa, Fraxinus angustifolia and Quercus pyrenaica.
    Ballesteros JA; Stoffel M; Bollschweiler M; Bodoque JM; Díez-Herrero A
    Tree Physiol; 2010 Jun; 30(6):773-81. PubMed ID: 20462937
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Browsing affects intra-ring carbon allocation in species with contrasting wood anatomy.
    Palacio S; Paterson E; Sim A; Hester AJ; Millard P
    Tree Physiol; 2011 Feb; 31(2):150-9. PubMed ID: 21388994
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Light compensation points in shade-grown seedlings of deciduous broadleaf tree species with different successional traits raised under elevated CO2.
    Kitao M; Hida T; Eguchi N; Tobita H; Utsugi H; Uemura A; Kitaoka S; Koike T
    Plant Biol (Stuttg); 2016 Jan; 18 Suppl 1():22-7. PubMed ID: 26404633
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Wood anatomical analysis of Alnus incana and Betula pendula injured by a debris-flow event.
    Arbellay E; Stoffel M; Bollschweiler M
    Tree Physiol; 2010 Oct; 30(10):1290-8. PubMed ID: 20639516
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Temperature responses of growth and wood anatomy in European beech saplings grown in different carbon dioxide concentrations.
    Overdieck D; Ziche D; Böttcher-Jungclaus K
    Tree Physiol; 2007 Feb; 27(2):261-8. PubMed ID: 17241968
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Carbon flux and growth in mature deciduous forest trees exposed to elevated CO2.
    Körner C; Asshoff R; Bignucolo O; Hättenschwiler S; Keel SG; Peláez-Riedl S; Pepin S; Siegwolf RT; Zotz G
    Science; 2005 Aug; 309(5739):1360-2. PubMed ID: 16123297
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of elevated CO2 concentration on growth, annual ring structure and photosynthesis in Larix kaempferi seedlings.
    Yazaki K; Ishida S; Kawagishi T; Fukatsu E; Maruyama Y; Kitao M; Tobita H; Koike T; Funada R
    Tree Physiol; 2004 Sep; 24(9):951-9. PubMed ID: 15234891
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of temperature and water deficit on cambial activity and woody ring features in Picea mariana saplings.
    Balducci L; Deslauriers A; Giovannelli A; Rossi S; Rathgeber CB
    Tree Physiol; 2013 Oct; 33(10):1006-17. PubMed ID: 24150035
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Wood properties of Populus and Betula in long-term exposure to elevated CO₂ and O₃.
    Kostiainen K; Saranpää P; Lundqvist SO; Kubiske ME; Vapaavuori E
    Plant Cell Environ; 2014 Jun; 37(6):1452-63. PubMed ID: 24372544
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Impact of carbohydrate supply on stem growth, wood and respired CO2 delta13C: assessment by experimental girdling.
    Maunoury-Danger F; Fresneau C; Eglin T; Berveiller D; François C; Lelarge-Trouverie C; Damesin C
    Tree Physiol; 2010 Jul; 30(7):818-30. PubMed ID: 20504776
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Intra-annual radial growth and water relations of trees: implications towards a growth mechanism.
    Zweifel R; Zimmermann L; Zeugin F; Newbery DM
    J Exp Bot; 2006; 57(6):1445-59. PubMed ID: 16556628
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Wood anatomical responses of oak saplings exposed to air warming and soil drought.
    Fonti P; Heller O; Cherubini P; Rigling A; Arend M
    Plant Biol (Stuttg); 2013 Jan; 15 Suppl 1():210-9. PubMed ID: 22612857
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of elevated atmospheric CO2 and tropospheric O3 on tree branch growth and implications for hydrologic budgeting.
    Rhea L; King J; Kubiske M; Saliendra N; Teclaw R
    Environ Pollut; 2010 Apr; 158(4):1079-87. PubMed ID: 19783339
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Xylem hydraulic adjustment and growth response of Quercus canariensis Willd. to climatic variability.
    Gea-Izquierdo G; Fonti P; Cherubini P; Martín-Benito D; Chaar H; Cañellas I
    Tree Physiol; 2012 Apr; 32(4):401-13. PubMed ID: 22508730
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Differential and interactive effects of temperature and photoperiod on budburst and carbon reserves in two co-occurring Mediterranean oaks.
    Sanz-Pérez V; Castro-Díez P; Valladares F
    Plant Biol (Stuttg); 2009 Mar; 11(2):142-51. PubMed ID: 19228321
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Size structure of current-year shoots in mature crowns.
    Suzuki M
    Ann Bot; 2003 Sep; 92(3):339-47. PubMed ID: 12853280
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Changes of hydraulic conductivity during dehydration and rehydration in Quercus serrata Thunb. and Betula platyphylla var. japonica Hara: the effect of xylem structures.
    Ogasa M; Miki N; Yoshikawa K
    Tree Physiol; 2010 May; 30(5):608-17. PubMed ID: 20368339
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Leaf and canopy conductance in aspen and aspen-birch forests under free-air enrichment of carbon dioxide and ozone.
    Uddling J; Teclaw RM; Pregitzer KS; Ellsworth DS
    Tree Physiol; 2009 Nov; 29(11):1367-80. PubMed ID: 19773339
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The influence of climate and fructification on the inter-annual variability of stem growth and net primary productivity in an old-growth, mixed beech forest.
    Mund M; Kutsch WL; Wirth C; Kahl T; Knohl A; Skomarkova MV; Schulze ED
    Tree Physiol; 2010 Jun; 30(6):689-704. PubMed ID: 20453002
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.