These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 20199625)

  • 1. Leafminers help us understand leaf hydraulic design.
    Nardini A; Raimondo F; Lo Gullo MA; Salleo S
    Plant Cell Environ; 2010 Jul; 33(7):1091-100. PubMed ID: 20199625
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Aesculus pavia foliar saponins: defensive role against the leafminer Cameraria ohridella.
    Ferracini C; Curir P; Dolci M; Lanzotti V; Alma A
    Pest Manag Sci; 2010 Jul; 66(7):767-72. PubMed ID: 20217891
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Residues of diflubenzuron on horse chestnut (Aesculus hippocastanum) leaves and their efficacy against the horse chestnut leafminer, Cameraria ohridella.
    Nejmanová J; Cvacka J; Hrdý I; Kuldová J; Mertelík J; Muck A; Nesnerová P; Svatos A
    Pest Manag Sci; 2006 Mar; 62(3):274-8. PubMed ID: 16475222
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Perspectives for the biological control of Cameraria ohridella.
    Zemek R; Prenerová E; Volter L; Weyda F; Skuhravý V
    Commun Agric Appl Biol Sci; 2007; 72(3):521-6. PubMed ID: 18399483
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of leaf damage by the horse chestnut leafminer (Cameraria ohridella Deschka & Dimić) on mycorrhiza of Aesculus hippocastanum L.
    Tyburska-Woś J; Nowak K; Kieliszewska-Rokicka B
    Mycorrhiza; 2019 Jan; 29(1):61-67. PubMed ID: 30145614
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Two methods of assessing the mortality factors affecting the larvae and pupae of Cameraria ohridella in the leaves of Aesculus hippocastanum in Switzerland and Bulgaria.
    Girardoz S; Tomov R; Eschen R; Quicke DL; Kenis M
    Bull Entomol Res; 2007 Oct; 97(5):445-53. PubMed ID: 17916263
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Water stress-induced modifications of leaf hydraulic architecture in sunflower: co-ordination with gas exchange.
    Nardini A; Salleo S
    J Exp Bot; 2005 Dec; 56(422):3093-101. PubMed ID: 16246857
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Leaf-lamina conductance contributes to an equal distribution of water delivery in current-year shoots of kudzu-vine shoot, Pueraria lobata.
    Taneda H; Tateno M
    Tree Physiol; 2011 Jul; 31(7):782-94. PubMed ID: 21813514
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of light intensity and duration on leaf hydraulic conductance and distribution of resistance in shoots of silver birch (Betula pendula).
    Sellin A; Ounapuu E; Kupper P
    Physiol Plant; 2008 Nov; 134(3):412-20. PubMed ID: 18513374
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The contributions of apoplastic, symplastic and gas phase pathways for water transport outside the bundle sheath in leaves.
    Buckley TN
    Plant Cell Environ; 2015 Jan; 38(1):7-22. PubMed ID: 24836699
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Leaf hydraulic conductance, measured in situ, declines and recovers daily: leaf hydraulics, water potential and stomatal conductance in four temperate and three tropical tree species.
    Johnson DM; Woodruff DR; McCulloh KA; Meinzer FC
    Tree Physiol; 2009 Jul; 29(7):879-87. PubMed ID: 19429900
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hydraulic architecture of plants of Helianthus annuus L. cv. Margot: evidence for plant segmentation in herbs.
    Lo Gullo MA; Castro Noval L; Salleo S; Nardini A
    J Exp Bot; 2004 Jul; 55(402):1549-56. PubMed ID: 15181104
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hydraulic resistance components of mature apple trees on rootstocks of different vigours.
    Cohen S; Naor A; Bennink J; Grava A; Tyree M
    J Exp Bot; 2007; 58(15-16):4213-24. PubMed ID: 18182426
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Vein recovery from embolism occurs under negative pressure in leaves of sunflower (Helianthus annuus).
    Nardini A; Ramani M; Gortan E; Salleo S
    Physiol Plant; 2008 Aug; 133(4):755-64. PubMed ID: 18346074
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tansley Review No. 22 What becomes of the transpiration stream?
    Canny MJ
    New Phytol; 1990 Mar; 114(3):341-368. PubMed ID: 33873972
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Heterogeneity of gas exchange rates over the leaf surface in tobacco: an effect of hydraulic architecture?
    Nardini A; Gortan E; Ramani M; Salleo S
    Plant Cell Environ; 2008 Jun; 31(6):804-12. PubMed ID: 18284586
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Leaf hydraulic maze: Abscisic acid effects on bundle sheath, palisade, and spongy mesophyll conductance.
    Yaaran A; Erez E; Procko C; Moshelion M
    Plant Physiol; 2023 Sep; 193(2):1349-1364. PubMed ID: 37390615
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effect of root pressurization on water relations, shoot growth, and leaf gas exchange of peach (Prunus persica) trees on rootstocks with differing growth potential and hydraulic conductance.
    Solari LI; DeJong TM
    J Exp Bot; 2006; 57(9):1981-9. PubMed ID: 16690626
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Impacts of tree height on leaf hydraulic architecture and stomatal control in Douglas-fir.
    Woodruff DR; McCulloh KA; Warren JM; Meinzer FC; Lachenbruch B
    Plant Cell Environ; 2007 May; 30(5):559-69. PubMed ID: 17407534
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Persistence of the entomopathogenic fungus Lecanicillium muscarium Zare & Gams under ambient conditions in the field.
    Lerche S; Sermann H; Büttner C
    Commun Agric Appl Biol Sci; 2009; 74(2):353-6. PubMed ID: 20222590
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.