BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 20199625)

  • 1. Leafminers help us understand leaf hydraulic design.
    Nardini A; Raimondo F; Lo Gullo MA; Salleo S
    Plant Cell Environ; 2010 Jul; 33(7):1091-100. PubMed ID: 20199625
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Aesculus pavia foliar saponins: defensive role against the leafminer Cameraria ohridella.
    Ferracini C; Curir P; Dolci M; Lanzotti V; Alma A
    Pest Manag Sci; 2010 Jul; 66(7):767-72. PubMed ID: 20217891
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Residues of diflubenzuron on horse chestnut (Aesculus hippocastanum) leaves and their efficacy against the horse chestnut leafminer, Cameraria ohridella.
    Nejmanová J; Cvacka J; Hrdý I; Kuldová J; Mertelík J; Muck A; Nesnerová P; Svatos A
    Pest Manag Sci; 2006 Mar; 62(3):274-8. PubMed ID: 16475222
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Perspectives for the biological control of Cameraria ohridella.
    Zemek R; Prenerová E; Volter L; Weyda F; Skuhravý V
    Commun Agric Appl Biol Sci; 2007; 72(3):521-6. PubMed ID: 18399483
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of leaf damage by the horse chestnut leafminer (Cameraria ohridella Deschka & Dimić) on mycorrhiza of Aesculus hippocastanum L.
    Tyburska-Woś J; Nowak K; Kieliszewska-Rokicka B
    Mycorrhiza; 2019 Jan; 29(1):61-67. PubMed ID: 30145614
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Two methods of assessing the mortality factors affecting the larvae and pupae of Cameraria ohridella in the leaves of Aesculus hippocastanum in Switzerland and Bulgaria.
    Girardoz S; Tomov R; Eschen R; Quicke DL; Kenis M
    Bull Entomol Res; 2007 Oct; 97(5):445-53. PubMed ID: 17916263
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Water stress-induced modifications of leaf hydraulic architecture in sunflower: co-ordination with gas exchange.
    Nardini A; Salleo S
    J Exp Bot; 2005 Dec; 56(422):3093-101. PubMed ID: 16246857
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Leaf-lamina conductance contributes to an equal distribution of water delivery in current-year shoots of kudzu-vine shoot, Pueraria lobata.
    Taneda H; Tateno M
    Tree Physiol; 2011 Jul; 31(7):782-94. PubMed ID: 21813514
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of light intensity and duration on leaf hydraulic conductance and distribution of resistance in shoots of silver birch (Betula pendula).
    Sellin A; Ounapuu E; Kupper P
    Physiol Plant; 2008 Nov; 134(3):412-20. PubMed ID: 18513374
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The contributions of apoplastic, symplastic and gas phase pathways for water transport outside the bundle sheath in leaves.
    Buckley TN
    Plant Cell Environ; 2015 Jan; 38(1):7-22. PubMed ID: 24836699
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Leaf hydraulic conductance, measured in situ, declines and recovers daily: leaf hydraulics, water potential and stomatal conductance in four temperate and three tropical tree species.
    Johnson DM; Woodruff DR; McCulloh KA; Meinzer FC
    Tree Physiol; 2009 Jul; 29(7):879-87. PubMed ID: 19429900
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hydraulic architecture of plants of Helianthus annuus L. cv. Margot: evidence for plant segmentation in herbs.
    Lo Gullo MA; Castro Noval L; Salleo S; Nardini A
    J Exp Bot; 2004 Jul; 55(402):1549-56. PubMed ID: 15181104
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hydraulic resistance components of mature apple trees on rootstocks of different vigours.
    Cohen S; Naor A; Bennink J; Grava A; Tyree M
    J Exp Bot; 2007; 58(15-16):4213-24. PubMed ID: 18182426
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Vein recovery from embolism occurs under negative pressure in leaves of sunflower (Helianthus annuus).
    Nardini A; Ramani M; Gortan E; Salleo S
    Physiol Plant; 2008 Aug; 133(4):755-64. PubMed ID: 18346074
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tansley Review No. 22 What becomes of the transpiration stream?
    Canny MJ
    New Phytol; 1990 Mar; 114(3):341-368. PubMed ID: 33873972
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Heterogeneity of gas exchange rates over the leaf surface in tobacco: an effect of hydraulic architecture?
    Nardini A; Gortan E; Ramani M; Salleo S
    Plant Cell Environ; 2008 Jun; 31(6):804-12. PubMed ID: 18284586
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Leaf hydraulic maze: Abscisic acid effects on bundle sheath, palisade, and spongy mesophyll conductance.
    Yaaran A; Erez E; Procko C; Moshelion M
    Plant Physiol; 2023 Sep; 193(2):1349-1364. PubMed ID: 37390615
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effect of root pressurization on water relations, shoot growth, and leaf gas exchange of peach (Prunus persica) trees on rootstocks with differing growth potential and hydraulic conductance.
    Solari LI; DeJong TM
    J Exp Bot; 2006; 57(9):1981-9. PubMed ID: 16690626
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Impacts of tree height on leaf hydraulic architecture and stomatal control in Douglas-fir.
    Woodruff DR; McCulloh KA; Warren JM; Meinzer FC; Lachenbruch B
    Plant Cell Environ; 2007 May; 30(5):559-69. PubMed ID: 17407534
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Persistence of the entomopathogenic fungus Lecanicillium muscarium Zare & Gams under ambient conditions in the field.
    Lerche S; Sermann H; Büttner C
    Commun Agric Appl Biol Sci; 2009; 74(2):353-6. PubMed ID: 20222590
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.