These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 20200490)

  • 1. A family of non-classical pseudoknots in influenza A and B viruses.
    Gultyaev AP; Olsthoorn RC
    RNA Biol; 2010; 7(2):125-9. PubMed ID: 20200490
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The influenza A segment 7 mRNA 3' splice site pseudoknot/hairpin family.
    Moss WN; Dela-Moss LI; Priore SF; Turner DH
    RNA Biol; 2012 Nov; 9(11):1305-10. PubMed ID: 23064116
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structure of the autoregulatory pseudoknot within the gene 32 messenger RNA of bacteriophages T2 and T6: a model for a possible family of structurally related RNA pseudoknots.
    Du Z; Giedroc DP; Hoffman DW
    Biochemistry; 1996 Apr; 35(13):4187-98. PubMed ID: 8672455
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification of conserved RNA secondary structures at influenza B and C splice sites reveals similarities and differences between influenza A, B, and C.
    Dela-Moss LI; Moss WN; Turner DH
    BMC Res Notes; 2014 Jan; 7():22. PubMed ID: 24405943
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nucleotides in the panhandle structure of the influenza B virus virion RNA are involved in the specificity between influenza A and B viruses.
    Lee YS; Seong BL
    J Gen Virol; 1998 Apr; 79 ( Pt 4)():673-81. PubMed ID: 9568960
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Possible involvement of coaxially stacked double pseudoknots in the regulation of -1 programmed ribosomal frameshifting in RNA viruses.
    Wang G; Yang Y; Huang X; Du Z
    J Biomol Struct Dyn; 2015; 33(7):1547-57. PubMed ID: 25204560
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The 3' splice site of influenza A segment 7 mRNA can exist in two conformations: a pseudoknot and a hairpin.
    Moss WN; Dela-Moss LI; Kierzek E; Kierzek R; Priore SF; Turner DH
    PLoS One; 2012; 7(6):e38323. PubMed ID: 22685560
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of the three large polymerase proteins of influenza A, B, and C viruses.
    Yamashita M; Krystal M; Palese P
    Virology; 1989 Aug; 171(2):458-66. PubMed ID: 2763462
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Solution structure of the pseudoknot of SRV-1 RNA, involved in ribosomal frameshifting.
    Michiels PJ; Versleijen AA; Verlaan PW; Pleij CW; Hilbers CW; Heus HA
    J Mol Biol; 2001 Jul; 310(5):1109-23. PubMed ID: 11501999
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A characteristic bent conformation of RNA pseudoknots promotes -1 frameshifting during translation of retroviral RNA.
    Chen X; Kang H; Shen LX; Chamorro M; Varmus HE; Tinoco I
    J Mol Biol; 1996 Jul; 260(4):479-83. PubMed ID: 8759314
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Second RNA-Binding Site in the NS1 Protein of Influenza B Virus.
    Ma LC; Guan R; Hamilton K; Aramini JM; Mao L; Wang S; Krug RM; Montelione GT
    Structure; 2016 Sep; 24(9):1562-72. PubMed ID: 27545620
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A mutant RNA pseudoknot that promotes ribosomal frameshifting in mouse mammary tumor virus.
    Kang H; Tinoco I
    Nucleic Acids Res; 1997 May; 25(10):1943-9. PubMed ID: 9115361
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Baculovirus-mediated bispecific short-hairpin small-interfering RNAs have remarkable ability to cope with both influenza viruses A and B.
    Suzuki H; Saitoh H; Suzuki T; Takaku H
    Oligonucleotides; 2009 Dec; 19(4):307-16. PubMed ID: 19899951
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparative analysis of the ability of the polymerase complexes of influenza viruses type A, B and C to assemble into functional RNPs that allow expression and replication of heterotypic model RNA templates in vivo.
    Crescenzo-Chaigne B; Naffakh N; van der Werf S
    Virology; 1999 Dec; 265(2):342-53. PubMed ID: 10600605
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mutational analysis of influenza B virus RNA transcription in vitro.
    Lee YS; Seong BL
    J Virol; 1996 Feb; 70(2):1232-6. PubMed ID: 8551586
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An NMR and mutational study of the pseudoknot within the gene 32 mRNA of bacteriophage T2: insights into a family of structurally related RNA pseudoknots.
    Du Z; Hoffman DW
    Nucleic Acids Res; 1997 Mar; 25(6):1130-5. PubMed ID: 9092620
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The structure of an RNA pseudoknot that causes efficient frameshifting in mouse mammary tumor virus.
    Shen LX; Tinoco I
    J Mol Biol; 1995 Apr; 247(5):963-78. PubMed ID: 7723043
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mutational analysis of the RNA pseudoknot involved in efficient ribosomal frameshifting in simian retrovirus-1.
    Sung D; Kang H
    Nucleic Acids Res; 1998 Mar; 26(6):1369-72. PubMed ID: 9490779
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A rapid method for the analysis of influenza virus genes: application to the reassortment of equine influenza virus genes.
    Adeyefa CA; Quayle K; McCauley JW
    Virus Res; 1994 Jun; 32(3):391-9. PubMed ID: 7521550
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sequence comparison and secondary structure analysis of the 3' noncoding region of flavivirus genomes reveals multiple pseudoknots.
    Olsthoorn RC; Bol JF
    RNA; 2001 Oct; 7(10):1370-7. PubMed ID: 11680841
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.