These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 20200602)

  • 1. Immersed finite element method and its applications to biological systems.
    Liu WK; Liu Y; Farrell D; Zhang L; Wang XS; Fukui Y; Patankar N; Zhang Y; Bajaj C; Lee J; Hong J; Chen X; Hsu H
    Comput Methods Appl Mech Eng; 2006 Feb; 195(13-16):1722-1749. PubMed ID: 20200602
    [TBL] [Abstract][Full Text] [Related]  

  • 2. On the Lagrangian-Eulerian Coupling in the Immersed Finite Element/Difference Method.
    Lee JH; Griffith BE
    J Comput Phys; 2022 May; 457():. PubMed ID: 35300097
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hybrid finite difference/finite element immersed boundary method.
    Griffith BE; Luo X
    Int J Numer Method Biomed Eng; 2017 Dec; 33(12):. PubMed ID: 28425587
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modified Immersed Finite Element Method For Fully-Coupled Fluid-Structure Interations.
    Wang X; Zhang LT
    Comput Methods Appl Mech Eng; 2013 Dec; 267():. PubMed ID: 24223445
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modeling of Soft Tissues Interacting with Fluid (Blood or Air) Using the Immersed Finite Element Method.
    Zhang LT
    J Biomed Sci Eng; 2014 Feb; 7(3):130-145. PubMed ID: 26855688
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Nodal Immersed Finite Element-Finite Difference Method.
    Wells D; Vadala-Roth B; Lee JH; Griffith BE
    J Comput Phys; 2023 Mar; 477():. PubMed ID: 37007629
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A sharp interface Lagrangian-Eulerian method for rigid-body fluid-structure interaction.
    Kolahdouz EM; Bhalla APS; Scotten LN; Craven BA; Griffith BE
    J Comput Phys; 2021 Oct; 443():. PubMed ID: 34149063
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Immersed Methods for Fluid-Structure Interaction.
    Griffith BE; Patankar NA
    Annu Rev Fluid Mech; 2020; 52():421-448. PubMed ID: 33012877
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An Immersed Boundary method with divergence-free velocity interpolation and force spreading.
    Bao Y; Donev A; Griffith BE; McQueen DM; Peskin CS
    J Comput Phys; 2017 Oct; 347():183-206. PubMed ID: 31595090
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A coupled approach for fluid saturated poroelastic media and immersed solids for modeling cell-tissue interactions.
    Rauch AD; Vuong AT; Yoshihara L; Wall WA
    Int J Numer Method Biomed Eng; 2018 Nov; 34(11):e3139. PubMed ID: 30070046
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An Immersed Interface Method for Discrete Surfaces.
    Kolahdouz EM; Bhalla APS; Craven BA; Griffith BE
    J Comput Phys; 2020 Jan; 400():. PubMed ID: 31802781
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of a fixed-grid and arbitrary Lagrangian-Eulerian methods on modelling fluid-structure interaction of the aortic valve.
    Joda A; Jin Z; Summers J; Korossis S
    Proc Inst Mech Eng H; 2019 May; 233(5):544-553. PubMed ID: 30922162
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stabilization approaches for the hyperelastic immersed boundary method for problems of large-deformation incompressible elasticity.
    Vadala-Roth B; Acharya S; Patankar NA; Rossi S; Griffith BE
    Comput Methods Appl Mech Eng; 2020 Jun; 365():. PubMed ID: 32483394
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fluid-Structure Interaction Simulation of Prosthetic Aortic Valves: Comparison between Immersed Boundary and Arbitrary Lagrangian-Eulerian Techniques for the Mesh Representation.
    Bavo AM; Rocatello G; Iannaccone F; Degroote J; Vierendeels J; Segers P
    PLoS One; 2016; 11(4):e0154517. PubMed ID: 27128798
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Large scale simulation of red blood cell aggregation in shear flows.
    Xu D; Kaliviotis E; Munjiza A; Avital E; Ji C; Williams J
    J Biomech; 2013 Jul; 46(11):1810-7. PubMed ID: 23809770
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Adaptive reproducing kernel particle method for extraction of the cortical surface.
    Xu M; Thompson PM; Toga AW
    IEEE Trans Med Imaging; 2006 Jun; 25(6):755-67. PubMed ID: 16768240
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A monolithic fluid-structure interaction framework applied to red blood cells.
    Cetin A; Sahin M
    Int J Numer Method Biomed Eng; 2019 Feb; 35(2):e3171. PubMed ID: 30426712
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Lagrangian Thin-Shell Finite Element Method for Interacting Particles on Fluid Membranes.
    Dharmavaram S; Wan X; Perotti LE
    Membranes (Basel); 2022 Sep; 12(10):. PubMed ID: 36295719
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cardiac fluid dynamics.
    Peskin CS; McQueen DM
    Crit Rev Biomed Eng; 1992; 20(5-6):451-9. PubMed ID: 1486785
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A finite difference method with subsampling for immersed boundary simulations of the capsule dynamics with viscoelastic membranes.
    Li P; Zhang J
    Int J Numer Method Biomed Eng; 2019 Jun; 35(6):e3200. PubMed ID: 30884167
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.