These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 20201223)

  • 1. Long-acting, multi-targeted nanomedicine: addressing unmet medical need in acute lung injury.
    Sadikot RT; Rubinstein I
    J Biomed Nanotechnol; 2009 Dec; 5(6):614-9. PubMed ID: 20201223
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A novel peptide nanomedicine against acute lung injury: GLP-1 in phospholipid micelles.
    Lim SB; Rubinstein I; Sadikot RT; Artwohl JE; Önyüksel H
    Pharm Res; 2011 Mar; 28(3):662-72. PubMed ID: 21108040
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Peptide nanomedicines for treatment of acute lung injury.
    Sadikot RT
    Methods Enzymol; 2012; 508():315-24. PubMed ID: 22449933
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Aerosolized prostacyclin for acute lung injury (ALI) and acute respiratory distress syndrome (ARDS).
    Afshari A; Brok J; Møller AM; Wetterslev J
    Cochrane Database Syst Rev; 2010 Aug; (8):CD007733. PubMed ID: 20687093
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Novel application of nanomedicine for the treatment of acute lung injury: a literature review.
    Chen X; Tang Z
    Ther Adv Respir Dis; 2024; 18():17534666241244974. PubMed ID: 38616385
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Efficacy of continuous blood purification on rescue therapy of the critically ill children with acute lung injury and acute respiratory distress syndrome].
    Zhang YC; Xu L; Rong QF; Zhu Y; Chen RX
    Zhonghua Er Ke Za Zhi; 2012 Mar; 50(3):188-92. PubMed ID: 22801199
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Keratinocyte growth factor expression is suppressed in early acute lung injury/acute respiratory distress syndrome by smad and c-Abl pathways.
    Chandel NS; Budinger GR; Mutlu GM; Varga J; Synenki L; Donnelly HK; Zirk A; Eisenbart J; Jovanovic B; Jain M
    Crit Care Med; 2009 May; 37(5):1678-84. PubMed ID: 19325470
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Editorial: Brave new world - Focus on nanomedicine.
    Alexiou C; Fadeel B
    Biochem Biophys Res Commun; 2015 Dec; 468(3):409-10. PubMed ID: 26518649
    [No Abstract]   [Full Text] [Related]  

  • 9. Nanomedicine-Based Therapeutics to Combat Acute Lung Injury.
    Bian S; Cai H; Cui Y; Liu W; Xiao C
    Int J Nanomedicine; 2021; 16():2247-2269. PubMed ID: 33776431
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nanomedicine to advance the treatment of bacteria-induced acute lung injury.
    Su R; Zhang Y; Zhang J; Wang H; Luo Y; Chan HF; Tao Y; Chen Z; Li M
    J Mater Chem B; 2021 Nov; 9(44):9100-9115. PubMed ID: 34672317
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Acute lung injury and acute respiratory distress syndrome requiring tracheal intubation and mechanical ventilation in the intensive care unit: impact on managing uncertainty for patient-centered communication.
    Johnson RF; Gustin J
    Am J Hosp Palliat Care; 2013 Sep; 30(6):569-75. PubMed ID: 23015728
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pharmacologic therapies on the horizon for acute lung injury/acute respiratory distress syndrome.
    Jacobson JR
    J Investig Med; 2009 Dec; 57(8):870-3. PubMed ID: 19820408
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Impact of acute lung injury and acute respiratory distress syndrome after traumatic brain injury in the United States.
    Rincon F; Ghosh S; Dey S; Maltenfort M; Vibbert M; Urtecho J; McBride W; Moussouttas M; Bell R; Ratliff JK; Jallo J
    Neurosurgery; 2012 Oct; 71(4):795-803. PubMed ID: 22855028
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Micellar nanomedicine of human neuropeptide Y.
    Kuzmis A; Lim SB; Desai E; Jeon E; Lee BS; Rubinstein I; Onyüksel H
    Nanomedicine; 2011 Aug; 7(4):464-71. PubMed ID: 21272667
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Losartan prevents sepsis-induced acute lung injury and decreases activation of nuclear factor kappaB and mitogen-activated protein kinases.
    Shen L; Mo H; Cai L; Kong T; Zheng W; Ye J; Qi J; Xiao Z
    Shock; 2009 May; 31(5):500-6. PubMed ID: 18827741
    [TBL] [Abstract][Full Text] [Related]  

  • 16. MicroRNA Regulation of Acute Lung Injury and Acute Respiratory Distress Syndrome.
    Rajasekaran S; Pattarayan D; Rajaguru P; Sudhakar Gandhi PS; Thimmulappa RK
    J Cell Physiol; 2016 Oct; 231(10):2097-106. PubMed ID: 26790856
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Micellar Nanomedicine of Novel Fatty Acid Modified Xenopus Glucagon-like Peptide-1: Improved Physicochemical Characteristics and Therapeutic Utilities for Type 2 Diabetes.
    Han J; Fei Y; Zhou F; Chen X; Zheng W; Fu J
    Mol Pharm; 2017 Nov; 14(11):3954-3967. PubMed ID: 28945431
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Partial liquid ventilation for preventing death and morbidity in adults with acute lung injury and acute respiratory distress syndrome.
    Davies MW; Fraser JF
    Cochrane Database Syst Rev; 2004 Oct; (4):CD003707. PubMed ID: 15495062
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evolution of treatments for patients with acute lung injury.
    Esper AM; Martin GS
    Expert Opin Investig Drugs; 2005 May; 14(5):633-45. PubMed ID: 15926869
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Could Heme Oxygenase-1 Be a New Target for Therapeutic Intervention in Malaria-Associated Acute Lung Injury/Acute Respiratory Distress Syndrome?
    Pereira MLM; Marinho CRF; Epiphanio S
    Front Cell Infect Microbiol; 2018; 8():161. PubMed ID: 29868517
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.