These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

820 related articles for article (PubMed ID: 20201486)

  • 1. Folding-based electrochemical biosensors: the case for responsive nucleic acid architectures.
    Lubin AA; Plaxco KW
    Acc Chem Res; 2010 Apr; 43(4):496-505. PubMed ID: 20201486
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Preparation of electrode-immobilized, redox-modified oligonucleotides for electrochemical DNA and aptamer-based sensing.
    Xiao Y; Lai RY; Plaxco KW
    Nat Protoc; 2007; 2(11):2875-80. PubMed ID: 18007622
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An electronic, aptamer-based small-molecule sensor for the rapid, label-free detection of cocaine in adulterated samples and biological fluids.
    Baker BR; Lai RY; Wood MS; Doctor EH; Heeger AJ; Plaxco KW
    J Am Chem Soc; 2006 Mar; 128(10):3138-9. PubMed ID: 16522082
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Target-responsive structural switching for nucleic acid-based sensors.
    Li D; Song S; Fan C
    Acc Chem Res; 2010 May; 43(5):631-41. PubMed ID: 20222738
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electrochemical biosensors employing an internal electrode attachment site and achieving reversible, high gain detection of specific nucleic acid sequences.
    Rowe AA; Chuh KN; Lubin AA; Miller EA; Cook B; Hollis D; Plaxco KW
    Anal Chem; 2011 Dec; 83(24):9462-6. PubMed ID: 21975121
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Re-engineering aptamers to support reagentless, self-reporting electrochemical sensors.
    White RJ; Rowe AA; Plaxco KW
    Analyst; 2010 Mar; 135(3):589-94. PubMed ID: 20174715
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of probe length, probe geometry, and redox-tag placement on the performance of the electrochemical E-DNA sensor.
    Lubin AA; Hunt BV; White RJ; Plaxco KW
    Anal Chem; 2009 Mar; 81(6):2150-8. PubMed ID: 19215066
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Design and testing of aptamer-based electrochemical biosensors for proteins and small molecules.
    Cheng AK; Sen D; Yu HZ
    Bioelectrochemistry; 2009 Nov; 77(1):1-12. PubMed ID: 19473883
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of structure variation of the aptamer-DNA duplex probe on the performance of displacement-based electrochemical aptamer sensors.
    Pang J; Zhang Z; Jin H
    Biosens Bioelectron; 2016 Mar; 77():174-81. PubMed ID: 26406458
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Analyte-driven switching of DNA charge transport: de novo creation of electronic sensors for an early lung cancer biomarker.
    Thomas JM; Chakraborty B; Sen D; Yu HZ
    J Am Chem Soc; 2012 Aug; 134(33):13823-33. PubMed ID: 22835075
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Improved sensitivity for the electrochemical biosensor with an adjunct probe.
    Yang K; Zhang CY
    Anal Chem; 2010 Nov; 82(22):9500-5. PubMed ID: 20979391
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Folding- and Dynamics-Based Electrochemical DNA Sensors.
    Lai RY
    Methods Enzymol; 2017; 589():221-252. PubMed ID: 28336065
    [TBL] [Abstract][Full Text] [Related]  

  • 13. "Fitting" makes "sensing" simple: label-free detection strategies based on nucleic acid aptamers.
    Du Y; Li B; Wang E
    Acc Chem Res; 2013 Feb; 46(2):203-13. PubMed ID: 23214491
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reagentless, electrochemical approach for the specific detection of double- and single-stranded DNA binding proteins.
    Ricci F; Bonham AJ; Mason AC; Reich NO; Plaxco KW
    Anal Chem; 2009 Feb; 81(4):1608-14. PubMed ID: 19199570
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Exonuclease I-Assisted General Strategy to Convert Aptamer-Based Electrochemical Biosensors from "Signal-Off" to "Signal-On".
    Gao X; Qi L; Liu K; Meng C; Li Y; Yu HZ
    Anal Chem; 2020 May; 92(9):6229-6234. PubMed ID: 32237711
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Survey of Redox-Active Moieties for Application in Multiplexed Electrochemical Biosensors.
    Kang D; Ricci F; White RJ; Plaxco KW
    Anal Chem; 2016 Nov; 88(21):10452-10458. PubMed ID: 27659949
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhancing the analytical performance of electrochemical RNA aptamer-based sensors for sensitive detection of aminoglycoside antibiotics.
    Schoukroun-Barnes LR; Wagan S; White RJ
    Anal Chem; 2014 Jan; 86(2):1131-7. PubMed ID: 24377296
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ultrasensitive electrochemical biomolecular detection using nanostructured microelectrodes.
    Sage AT; Besant JD; Lam B; Sargent EH; Kelley SO
    Acc Chem Res; 2014 Aug; 47(8):2417-25. PubMed ID: 24961296
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Monitoring cooperative binding using electrochemical DNA-based sensors.
    Macazo FC; Karpel RL; White RJ
    Langmuir; 2015 Jan; 31(2):868-75. PubMed ID: 25517392
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Integrated electrochemical microsystems for genetic detection of pathogens at the point of care.
    Hsieh K; Ferguson BS; Eisenstein M; Plaxco KW; Soh HT
    Acc Chem Res; 2015 Apr; 48(4):911-20. PubMed ID: 25785632
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 41.