BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

302 related articles for article (PubMed ID: 20201542)

  • 1. Evaluation of transparent carbon nanotube networks of homogeneous electronic type.
    Jackson RK; Munro A; Nebesny K; Armstrong N; Graham S
    ACS Nano; 2010 Mar; 4(3):1377-84. PubMed ID: 20201542
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transparent conductive single-walled carbon nanotube networks with precisely tunable ratios of semiconducting and metallic nanotubes.
    Blackburn JL; Barnes TM; Beard MC; Kim YH; Tenent RC; McDonald TJ; To B; Coutts TJ; Heben MJ
    ACS Nano; 2008 Jun; 2(6):1266-74. PubMed ID: 19206344
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Networks of semiconducting SWNTs: contribution of midgap electronic states to the electrical transport.
    Itkis ME; Pekker A; Tian X; Bekyarova E; Haddon RC
    Acc Chem Res; 2015 Aug; 48(8):2270-9. PubMed ID: 26244611
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Free-standing highly conductive transparent ultrathin single-walled carbon nanotube films.
    Liu Q; Fujigaya T; Cheng HM; Nakashima N
    J Am Chem Soc; 2010 Nov; 132(46):16581-6. PubMed ID: 21028804
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electronic properties of single-walled carbon nanotube networks.
    Bekyarova E; Itkis ME; Cabrera N; Zhao B; Yu A; Gao J; Haddon RC
    J Am Chem Soc; 2005 Apr; 127(16):5990-5. PubMed ID: 15839699
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparative study on different carbon nanotube materials in terms of transparent conductive coatings.
    Li Z; Kandel HR; Dervishi E; Saini V; Xu Y; Biris AR; Lupu D; Salamo GJ; Biris AS
    Langmuir; 2008 Mar; 24(6):2655-62. PubMed ID: 18251555
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fabrication and characterization of thin films of single-walled carbon nanotube bundles on flexible plastic substrates.
    Saran N; Parikh K; Suh DS; Muñoz E; Kolla H; Manohar SK
    J Am Chem Soc; 2004 Apr; 126(14):4462-3. PubMed ID: 15070332
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Assessment of the electrochemical behavior of two-dimensional networks of single-walled carbon nanotubes.
    Wilson NR; Guille M; Dumitrescu I; Fernandez VR; Rudd NC; Williams CG; Unwin PR; Macpherson JV
    Anal Chem; 2006 Oct; 78(19):7006-15. PubMed ID: 17007527
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Photophysics of individual single-walled carbon nanotubes.
    Carlson LJ; Krauss TD
    Acc Chem Res; 2008 Feb; 41(2):235-43. PubMed ID: 18281946
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thin film transistors using preferentially grown semiconducting single-walled carbon nanotube networks by water-assisted plasma-enhanced chemical vapor deposition.
    Kim UJ; Lee EH; Kim JM; Min YS; Kim E; Park W
    Nanotechnology; 2009 Jul; 20(29):295201. PubMed ID: 19567966
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [60]-fullerene and single-walled carbon nanotube-based ultrathin films stepwise grafted onto a self-assembled monolayer on ITO.
    Wang Q; Moriyama H
    Langmuir; 2009 Sep; 25(18):10834-42. PubMed ID: 19639982
    [TBL] [Abstract][Full Text] [Related]  

  • 12. n-Type transparent conducting films of small molecule and polymer amine doped single-walled carbon nanotubes.
    Mistry KS; Larsen BA; Bergeson JD; Barnes TM; Teeter G; Engtrakul C; Blackburn JL
    ACS Nano; 2011 May; 5(5):3714-23. PubMed ID: 21388221
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Suppression of metallic conductivity of single-walled carbon nanotubes by cycloaddition reactions.
    Kanungo M; Lu H; Malliaras GG; Blanchet GB
    Science; 2009 Jan; 323(5911):234-7. PubMed ID: 19131624
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Solution assembly of organized carbon nanotube networks for thin-film transistors.
    Lemieux MC; Sok S; Roberts ME; Opatkiewicz JP; Liu D; Barman SN; Patil N; Mitra S; Bao Z
    ACS Nano; 2009 Dec; 3(12):4089-97. PubMed ID: 19924882
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Recent progress in chemical detection with single-walled carbon nanotube networks.
    Vichchulada P; Zhang Q; Lay MD
    Analyst; 2007 Aug; 132(8):719-23. PubMed ID: 17646869
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Covalent attachment and hybridization of DNA oligonucleotides on patterned single-walled carbon nanotube films.
    Jung DH; Kim BH; Ko YK; Jung MS; Jung S; Lee SY; Jung HT
    Langmuir; 2004 Sep; 20(20):8886-91. PubMed ID: 15379522
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Assessment of chemically separated carbon nanotubes for nanoelectronics.
    Zhang L; Zaric S; Tu X; Wang X; Zhao W; Dai H
    J Am Chem Soc; 2008 Feb; 130(8):2686-91. PubMed ID: 18251484
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electrochemistry at single-walled carbon nanotubes: the role of band structure and quantum capacitance.
    Heller I; Kong J; Williams KA; Dekker C; Lemay SG
    J Am Chem Soc; 2006 Jun; 128(22):7353-9. PubMed ID: 16734491
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Continuous and scalable fabrication of transparent conducting carbon nanotube films.
    Dan B; Irvin GC; Pasquali M
    ACS Nano; 2009 Apr; 3(4):835-43. PubMed ID: 19354279
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Separated metallic and semiconducting single-walled carbon nanotubes: opportunities in transparent electrodes and beyond.
    Lu F; Meziani MJ; Cao L; Sun YP
    Langmuir; 2011 Apr; 27(8):4339-50. PubMed ID: 20942475
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.