These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 20201589)

  • 1. Optimal de novo design of MRM experiments for rapid assay development in targeted proteomics.
    Bertsch A; Jung S; Zerck A; Pfeifer N; Nahnsen S; Henneges C; Nordheim A; Kohlbacher O
    J Proteome Res; 2010 May; 9(5):2696-704. PubMed ID: 20201589
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Collision energy optimization of b- and y-ions for multiple reaction monitoring mass spectrometry.
    Holstein Sherwood CA; Gafken PR; Martin DB
    J Proteome Res; 2011 Jan; 10(1):231-40. PubMed ID: 20968307
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multiple products monitoring as a robust approach for peptide quantification.
    Baek JH; Kim H; Shin B; Yu MH
    J Proteome Res; 2009 Jul; 8(7):3625-32. PubMed ID: 19505066
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Semi-supervised learning for peptide identification from shotgun proteomics datasets.
    Käll L; Canterbury JD; Weston J; Noble WS; MacCoss MJ
    Nat Methods; 2007 Nov; 4(11):923-5. PubMed ID: 17952086
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Combinatorial peptide libraries facilitate development of multiple reaction monitoring assays for low-abundance proteins.
    Drabovich AP; Diamandis EP
    J Proteome Res; 2010 Mar; 9(3):1236-45. PubMed ID: 20070123
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Extended Range Proteomic Analysis (ERPA): a new and sensitive LC-MS platform for high sequence coverage of complex proteins with extensive post-translational modifications-comprehensive analysis of beta-casein and epidermal growth factor receptor (EGFR).
    Wu SL; Kim J; Hancock WS; Karger B
    J Proteome Res; 2005; 4(4):1155-70. PubMed ID: 16083266
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mining proteomic MS/MS data for MRM transitions.
    Chem Mead JA; Bianco L; Bessant C
    Methods Mol Biol; 2010; 604():187-99. PubMed ID: 20013372
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Informatics for peptide retention properties in proteomic LC-MS.
    Shinoda K; Sugimoto M; Tomita M; Ishihama Y
    Proteomics; 2008 Feb; 8(4):787-98. PubMed ID: 18214845
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Proteomics-grade de novo sequencing approach.
    Savitski MM; Nielsen ML; Kjeldsen F; Zubarev RA
    J Proteome Res; 2005; 4(6):2348-54. PubMed ID: 16335984
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Improving peptide identification in proteome analysis by a two-dimensional retention time filtering approach.
    Pfeifer N; Leinenbach A; Huber CG; Kohlbacher O
    J Proteome Res; 2009 Aug; 8(8):4109-15. PubMed ID: 19492844
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Targeted proteomic analysis of glycolysis in cancer cells.
    Murphy JP; Pinto DM
    J Proteome Res; 2011 Feb; 10(2):604-13. PubMed ID: 21058741
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Targeted comparative proteomics by liquid chromatography/matrix-assisted laser desorption/ionization triple-quadrupole mass spectrometry.
    Melanson JE; Chisholm KA; Pinto DM
    Rapid Commun Mass Spectrom; 2006; 20(5):904-10. PubMed ID: 16470697
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Proteomics: from hypothesis to quantitative assay on a single platform. Guidelines for developing MRM assays using ion trap mass spectrometers.
    Han B; Higgs RE
    Brief Funct Genomic Proteomic; 2008 Sep; 7(5):340-54. PubMed ID: 18579614
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluation of data-dependent versus targeted shotgun proteomic approaches for monitoring transcription factor expression in breast cancer.
    Sandhu C; Hewel JA; Badis G; Talukder S; Liu J; Hughes TR; Emili A
    J Proteome Res; 2008 Apr; 7(4):1529-41. PubMed ID: 18311902
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Intensity-based protein identification by machine learning from a library of tandem mass spectra.
    Elias JE; Gibbons FD; King OD; Roth FP; Gygi SP
    Nat Biotechnol; 2004 Feb; 22(2):214-9. PubMed ID: 14730315
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Targeted in-gel MRM: a hypothesis driven approach for colorectal cancer biomarker discovery in human feces.
    Ang CS; Nice EC
    J Proteome Res; 2010 Sep; 9(9):4346-55. PubMed ID: 20684568
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Basic design of MRM assays for peptide quantification.
    James A; Jorgensen C
    Methods Mol Biol; 2010; 658():167-85. PubMed ID: 20839104
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Using pure protein to build a multiple reaction monitoring mass spectrometry assay for targeted detection and quantitation.
    Grote E; Fu Q; Ji W; Liu X; Van Eyk JE
    Methods Mol Biol; 2013; 1005():199-213. PubMed ID: 23606259
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Advances in hyphenated analytical techniques for shotgun proteome and peptidome analysis--a review.
    Hu L; Ye M; Jiang X; Feng S; Zou H
    Anal Chim Acta; 2007 Aug; 598(2):193-204. PubMed ID: 17719892
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparative evaluation of mass spectrometry platforms used in large-scale proteomics investigations.
    Elias JE; Haas W; Faherty BK; Gygi SP
    Nat Methods; 2005 Sep; 2(9):667-75. PubMed ID: 16118637
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.