BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 20201594)

  • 1. In situ surface plasmon resonance investigation of the assembly process of multiwalled carbon nanotubes on an alkanethiol self-assembled monolayer for efficient protein immobilization and detection.
    Hu W; Lu Z; Liu Y; Li CM
    Langmuir; 2010 Jun; 26(11):8386-91. PubMed ID: 20201594
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dendrimer-functionalized self-assembled monolayers as a surface plasmon resonance sensor surface.
    Mark SS; Sandhyarani N; Zhu C; Campagnolo C; Batt CA
    Langmuir; 2004 Aug; 20(16):6808-17. PubMed ID: 15274589
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Immobilization of acetylcholinesterase based on the controllable adsorption of carbon nanotubes onto an alkanethiol monolayer for carbaryl sensing.
    Du D; Wang M; Cai J; Tao Y; Tu H; Zhang A
    Analyst; 2008 Dec; 133(12):1790-5. PubMed ID: 19082085
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Three-dimensionally assembled gold nanostructures for plasmonic biosensors.
    Guo L; Chen G; Kim DH
    Anal Chem; 2010 Jun; 82(12):5147-53. PubMed ID: 20469841
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development of a "membrane cloaking" method for amperometric enzyme immunoassay and surface plasmon resonance analysis of proteins in serum samples.
    Phillips KS; Han JH; Cheng Q
    Anal Chem; 2007 Feb; 79(3):899-907. PubMed ID: 17263314
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of nanometer surface morphology on surface stress and adsorption kinetics of alkanethiol self-assembled monolayers.
    Desikan R; Lee I; Thundat T
    Ultramicroscopy; 2006; 106(8-9):795-9. PubMed ID: 16678968
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Improving neuron-to-electrode surface attachment via alkanethiol self-assembly: an alternating current impedance study.
    Slaughter GE; Bieberich E; Wnek GE; Wynne KJ; Guiseppi-Elie A
    Langmuir; 2004 Aug; 20(17):7189-200. PubMed ID: 15301505
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In situ sensing of metal ion adsorption to a thiolated surface using surface plasmon resonance spectroscopy.
    Moon J; Kang T; Oh S; Hong S; Yi J
    J Colloid Interface Sci; 2006 Jun; 298(2):543-9. PubMed ID: 16458912
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Surface plasmon resonance biosensor for direct detection of antibodies against human growth hormone.
    Kausaite-Minkstimiene A; Ramanaviciene A; Ramanavicius A
    Analyst; 2009 Oct; 134(10):2051-7. PubMed ID: 19768212
    [TBL] [Abstract][Full Text] [Related]  

  • 10. DNA sensors based on mixed self-assembled DNA/alkanethiol films.
    Peeters S; Stakenborg T
    Methods Mol Biol; 2010; 627():179-89. PubMed ID: 20217621
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantitative analysis of protein adsorption via atomic force microscopy and surface plasmon resonance.
    Servoli E; Maniglio D; Aguilar MR; Motta A; San Roman J; Belfiore LA; Migliaresi C
    Macromol Biosci; 2008 Dec; 8(12):1126-34. PubMed ID: 18690649
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Labeled gold nanoparticles immobilized at smooth metallic substrates: systematic investigation of surface plasmon resonance and surface-enhanced Raman scattering.
    Driskell JD; Lipert RJ; Porter MD
    J Phys Chem B; 2006 Sep; 110(35):17444-51. PubMed ID: 16942083
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Poly(pyrrole-co-pyrrole propylic acid) film and its application in label-free surface plasmon resonance immunosensors.
    Hu W; Li CM; Dong H
    Anal Chim Acta; 2008 Dec; 630(1):67-74. PubMed ID: 19068327
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hybrid surface platform for the simultaneous detection of proteins and DNAs using a surface plasmon resonance imaging sensor.
    Ladd J; Taylor AD; Piliarik M; Homola J; Jiang S
    Anal Chem; 2008 Jun; 80(11):4231-6. PubMed ID: 18457413
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Localized surface plasmon resonance detection of layered biointeractions on metallic subwavelength nanogratings.
    Kim K; Kim DJ; Moon S; Kim D; Byun KM
    Nanotechnology; 2009 Aug; 20(31):315501. PubMed ID: 19597249
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Peptide self-assembled monolayers for label-free and unamplified surface plasmon resonance biosensing in crude cell lysate.
    Bolduc OR; Clouthier CM; Pelletier JN; Masson JF
    Anal Chem; 2009 Aug; 81(16):6779-88. PubMed ID: 19606821
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A SPR and AFM study of the effect of surface heterogeneity on adsorption of proteins.
    Huang YW; Gupta VK
    J Chem Phys; 2004 Aug; 121(5):2264-71. PubMed ID: 15260781
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of a self-assembled monolayer of thiol on a gold surface and the fabrication of a biosensor chip based on surface plasmon resonance for detecting anti-GAD antibody.
    Lee JW; Sim SJ; Cho SM; Lee J
    Biosens Bioelectron; 2005 Jan; 20(7):1422-7. PubMed ID: 15590298
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Surface plasmon resonance immunosensor for human cardiac troponin T based on self-assembled monolayer.
    Dutra RF; Mendes RK; Lins da Silva V; Kubota LT
    J Pharm Biomed Anal; 2007 Apr; 43(5):1744-50. PubMed ID: 17254730
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Surface plasmon resonance immunosensor for the detection of Salmonella typhimurium.
    Oh BK; Kim YK; Park KW; Lee WH; Choi JW
    Biosens Bioelectron; 2004 Jun; 19(11):1497-504. PubMed ID: 15093222
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.