These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
115 related articles for article (PubMed ID: 20201828)
1. Cyclic mechanical strain promotes transforming-growth-factor-beta1-mediated cardiomyogenic marker expression in bone-marrow-derived mesenchymal stem cells in vitro. Bhang SH; Gwak SJ; Lee TJ; Kim SS; Park HH; Park MH; Lee DH; Lee SH; Kim BS Biotechnol Appl Biochem; 2010 Apr; 55(4):191-7. PubMed ID: 20201828 [TBL] [Abstract][Full Text] [Related]
2. In vitro cardiomyogenic differentiation of adipose-derived stromal cells using transforming growth factor-beta1. Gwak SJ; Bhang SH; Yang HS; Kim SS; Lee DH; Lee SH; Kim BS Cell Biochem Funct; 2009 Apr; 27(3):148-54. PubMed ID: 19319827 [TBL] [Abstract][Full Text] [Related]
3. In vitro cardiomyogenic differentiation of adult human bone marrow mesenchymal stem cells. The role of 5-azacytidine. Antonitsis P; Ioannidou-Papagiannaki E; Kaidoglou A; Papakonstantinou C Interact Cardiovasc Thorac Surg; 2007 Oct; 6(5):593-7. PubMed ID: 17670726 [TBL] [Abstract][Full Text] [Related]
4. Effects of transforming growth factor-beta 1 and ascorbic acid on differentiation of human bone-marrow-derived mesenchymal stem cells into smooth muscle cell lineage. Narita Y; Yamawaki A; Kagami H; Ueda M; Ueda Y Cell Tissue Res; 2008 Sep; 333(3):449-59. PubMed ID: 18607632 [TBL] [Abstract][Full Text] [Related]
5. Temporal expression patterns and corresponding protein inductions of early responsive genes in rabbit bone marrow-derived mesenchymal stem cells under cyclic compressive loading. Huang CY; Reuben PM; Cheung HS Stem Cells; 2005 Sep; 23(8):1113-21. PubMed ID: 15955834 [TBL] [Abstract][Full Text] [Related]
6. In situ cardiomyogenic differentiation of implanted bone marrow mononuclear cells by local delivery of transforming growth factor-β1. Yang HS; Bhang SH; Kim IK; Lee TJ; Kang JM; Lee DH; Lee SH; Hwang KC; Kim BS Cell Transplant; 2012; 21(1):299-312. PubMed ID: 21669031 [TBL] [Abstract][Full Text] [Related]
7. The cardiomyogenic differentiation of rat mesenchymal stem cells on silk fibroin-polysaccharide cardiac patches in vitro. Yang MC; Wang SS; Chou NK; Chi NH; Huang YY; Chang YL; Shieh MJ; Chung TW Biomaterials; 2009 Aug; 30(22):3757-65. PubMed ID: 19410289 [TBL] [Abstract][Full Text] [Related]
8. A recombinant human TGF-beta1 fusion protein with collagen-binding domain promotes migration, growth, and differentiation of bone marrow mesenchymal cells. Andrades JA; Han B; Becerra J; Sorgente N; Hall FL; Nimni ME Exp Cell Res; 1999 Aug; 250(2):485-98. PubMed ID: 10413602 [TBL] [Abstract][Full Text] [Related]
9. Cardiomyogenic potential of human adult bone marrow mesenchymal stem cells in vitro. Antonitsis P; Ioannidou-Papagiannaki E; Kaidoglou A; Charokopos N; Kalogeridis A; Kouzi-Koliakou K; Kyriakopoulou I; Klonizakis I; Papakonstantinou C Thorac Cardiovasc Surg; 2008 Mar; 56(2):77-82. PubMed ID: 18278681 [TBL] [Abstract][Full Text] [Related]
10. Nuclear cardiac troponin and tropomyosin are expressed early in cardiac differentiation of rat mesenchymal stem cells. Asumda FZ; Chase PB Differentiation; 2012 Mar; 83(3):106-15. PubMed ID: 22364878 [TBL] [Abstract][Full Text] [Related]
11. The proteome of mouse mucosal mast cell homologues: the role of transforming growth factor beta1. Pemberton AD; Brown JK; Wright SH; Knight PA; Miller HR Proteomics; 2006 Jan; 6(2):623-31. PubMed ID: 16342142 [TBL] [Abstract][Full Text] [Related]
12. Effects of cyclic compressive loading on chondrogenesis of rabbit bone-marrow derived mesenchymal stem cells. Huang CY; Hagar KL; Frost LE; Sun Y; Cheung HS Stem Cells; 2004; 22(3):313-23. PubMed ID: 15153608 [TBL] [Abstract][Full Text] [Related]
13. Cardiomyogenic differentiation of human bone marrow mesenchymal cells: Role of cardiac extract from neonatal rat cardiomyocytes. Labovsky V; Hofer EL; Feldman L; Fernández Vallone V; García Rivello H; Bayes-Genis A; Hernando Insúa A; Levin MJ; Chasseing NA Differentiation; 2010 Feb; 79(2):93-101. PubMed ID: 19926393 [TBL] [Abstract][Full Text] [Related]
14. Novel cardiac precursor-like cells from human menstrual blood-derived mesenchymal cells. Hida N; Nishiyama N; Miyoshi S; Kira S; Segawa K; Uyama T; Mori T; Miyado K; Ikegami Y; Cui C; Kiyono T; Kyo S; Shimizu T; Okano T; Sakamoto M; Ogawa S; Umezawa A Stem Cells; 2008 Jul; 26(7):1695-704. PubMed ID: 18420831 [TBL] [Abstract][Full Text] [Related]
15. PTHrP promotes chondrogenesis and suppresses hypertrophy from both bone marrow-derived and adipose tissue-derived MSCs. Kim YJ; Kim HJ; Im GI Biochem Biophys Res Commun; 2008 Aug; 373(1):104-8. PubMed ID: 18554504 [TBL] [Abstract][Full Text] [Related]
16. Chondrogenic differentiation of bovine bone marrow mesenchymal stem cells in pellet cultural system. Bosnakovski D; Mizuno M; Kim G; Ishiguro T; Okumura M; Iwanaga T; Kadosawa T; Fujinaga T Exp Hematol; 2004 May; 32(5):502-9. PubMed ID: 15145219 [TBL] [Abstract][Full Text] [Related]
17. Bone marrow-derived mesenchymal stromal cells express cardiac-specific markers, retain the stromal phenotype, and do not become functional cardiomyocytes in vitro. Rose RA; Jiang H; Wang X; Helke S; Tsoporis JN; Gong N; Keating SC; Parker TG; Backx PH; Keating A Stem Cells; 2008 Nov; 26(11):2884-92. PubMed ID: 18687994 [TBL] [Abstract][Full Text] [Related]
18. Impact of myocardial infarct proteins and oscillating pressure on the differentiation of mesenchymal stem cells: effect of acute myocardial infarction on stem cell differentiation. Chang SA; Lee EJ; Kang HJ; Zhang SY; Kim JH; Li L; Youn SW; Lee CS; Kim KH; Won JY; Sohn JW; Park KW; Cho HJ; Yang SE; Oh WI; Yang YS; Ho WK; Park YB; Kim HS Stem Cells; 2008 Jul; 26(7):1901-12. PubMed ID: 18403756 [TBL] [Abstract][Full Text] [Related]