BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 20201889)

  • 1. Atrial-selective sodium channel block as a novel strategy for the management of atrial fibrillation.
    Antzelevitch C; Burashnikov A
    Ann N Y Acad Sci; 2010 Feb; 1188():78-86. PubMed ID: 20201889
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Atrial-selective sodium channel block as a novel strategy for the management of atrial fibrillation.
    Antzelevitch C; Burashnikov A
    J Electrocardiol; 2009; 42(6):543-8. PubMed ID: 19698954
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Atrial-selective sodium channel blockers: do they exist?
    Burashnikov A; Antzelevitch C
    J Cardiovasc Pharmacol; 2008 Aug; 52(2):121-8. PubMed ID: 18670368
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Atrial-selective sodium channel block as a strategy for suppression of atrial fibrillation.
    Burashnikov A; Di Diego JM; Zygmunt AC; Belardinelli L; Antzelevitch C
    Ann N Y Acad Sci; 2008 Mar; 1123():105-12. PubMed ID: 18375582
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Potassium Channel Blockade Enhances Atrial Fibrillation-Selective Antiarrhythmic Effects of Optimized State-Dependent Sodium Channel Blockade.
    Aguilar M; Xiong F; Qi XY; Comtois P; Nattel S
    Circulation; 2015 Dec; 132(23):2203-11. PubMed ID: 26499964
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Past, Present, and Potential Future of Sodium Channel Block as an Atrial Fibrillation Suppressing Strategy.
    Aguilar M; Nattel S
    J Cardiovasc Pharmacol; 2015 Nov; 66(5):432-40. PubMed ID: 25923324
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inhibition of IKr potentiates development of atrial-selective INa block leading to effective suppression of atrial fibrillation.
    Burashnikov A; Belardinelli L; Antzelevitch C
    Heart Rhythm; 2015 Apr; 12(4):836-44. PubMed ID: 25546810
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Role of late sodium channel current block in the management of atrial fibrillation.
    Burashnikov A; Antzelevitch C
    Cardiovasc Drugs Ther; 2013 Feb; 27(1):79-89. PubMed ID: 23108433
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Atrial-selective sodium channel block strategy to suppress atrial fibrillation: ranolazine versus propafenone.
    Burashnikov A; Belardinelli L; Antzelevitch C
    J Pharmacol Exp Ther; 2012 Jan; 340(1):161-8. PubMed ID: 22005044
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Atrial-selective sodium channel block for the treatment of atrial fibrillation.
    Burashnikov A; Antzelevitch C
    Expert Opin Emerg Drugs; 2009 Jun; 14(2):233-49. PubMed ID: 19466903
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanisms of atrial fibrillation termination by rapidly unbinding Na+ channel blockers: insights from mathematical models and experimental correlates.
    Comtois P; Sakabe M; Vigmond EJ; Munoz M; Texier A; Shiroshita-Takeshita A; Nattel S
    Am J Physiol Heart Circ Physiol; 2008 Oct; 295(4):H1489-504. PubMed ID: 18676686
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In silico optimization of atrial fibrillation-selective sodium channel blocker pharmacodynamics.
    Aguilar-Shardonofsky M; Vigmond EJ; Nattel S; Comtois P
    Biophys J; 2012 Mar; 102(5):951-60. PubMed ID: 22404917
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ranolazine as a promising treatment option for atrial fibrillation: electrophysiologic mechanisms, experimental evidence, and clinical implications.
    Fragakis N; Koskinas KC; Vassilikos V
    Pacing Clin Electrophysiol; 2014 Oct; 37(10):1412-20. PubMed ID: 25138058
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanisms of atrial fibrillation termination by pure sodium channel blockade in an ionically-realistic mathematical model.
    Kneller J; Kalifa J; Zou R; Zaitsev AV; Warren M; Berenfeld O; Vigmond EJ; Leon LJ; Nattel S; Jalife J
    Circ Res; 2005 Mar; 96(5):e35-47. PubMed ID: 15731458
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of Na+-channel blockade on the three-dimensional substrate of atrial fibrillation in a model of endo-epicardial dissociation and transmural conduction.
    Gharaviri A; Verheule S; Eckstein J; Potse M; Krause R; Auricchio A; Kuijpers NHL; Schotten U
    Europace; 2018 Nov; 20(suppl_3):iii69-iii76. PubMed ID: 30476060
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sodium channel block by ranolazine in an experimental model of stretch-related atrial fibrillation: prolongation of interatrial conduction time and increase in post-repolarization refractoriness.
    Milberg P; Frommeyer G; Ghezelbash S; Rajamani S; Osada N; Razvan R; Belardinelli L; Breithardt G; Eckardt L
    Europace; 2013 May; 15(5):761-9. PubMed ID: 23376977
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Potential application of late sodium current blockade in the treatment of heart failure and atrial fibrillation.
    Doshi D; Morrow JP
    Rev Cardiovasc Med; 2009; 10 Suppl 1():S46-52. PubMed ID: 19898288
    [TBL] [Abstract][Full Text] [Related]  

  • 18. How Do Atrial-Selective Drugs Differ From Antiarrhythmic Drugs Currently Used in the Treatment of Atrial Fibrillation?
    Burashnikov A; Antzelevitch C
    J Atr Fibrillation; 2008; 1(2):98-107. PubMed ID: 21057583
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Atrial selectivity of antiarrhythmic drugs.
    Ravens U; Poulet C; Wettwer E; Knaut M
    J Physiol; 2013 Sep; 591(17):4087-97. PubMed ID: 23732646
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Novel pharmacological targets for the rhythm control management of atrial fibrillation.
    Burashnikov A; Antzelevitch C
    Pharmacol Ther; 2011 Dec; 132(3):300-13. PubMed ID: 21867730
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.