BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 202026)

  • 1. Particle-mediated membrane uptake of chemical carcinogens studied by fluorescence spectroscopy.
    Lakowicz JR; McNamara M; Steenson L
    Science; 1978 Jan; 199(4326):305-7. PubMed ID: 202026
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Particle-enhanced membrane uptake of a polynuclear aromatic hydrocarbon: a possible role in cocarcinogenesis.
    Lakowicz JR; Englund F; Hidmark A
    J Natl Cancer Inst; 1978 Oct; 61(4):1155-9. PubMed ID: 212570
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Particulate enhanced membrane uptake of 1,2-benzanthracene observed by fluorescence spectroscopy: a possible role in co-carcinogenesis.
    Lakowicz JR; Englund F; Hidmark A
    Biochim Biophys Acta; 1978 Oct; 543(2):202-16. PubMed ID: 215222
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transport of a carcinogen, benzo[a]pyrene, from particulates to lipid bilayers: a model for the fate of particle-adsorbed polynuclear aromatic hydrocarbons which are retained in the lungs.
    Lakowicz JR; Bevan DR; Riemer SC
    Biochim Biophys Acta; 1980 May; 629(2):243-58. PubMed ID: 6892996
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of particulate matter on rates of membrane uptake of polynuclear aromatic hydrocarbons.
    Bevan DR; Riemer SC; Lakowicz JR
    J Toxicol Environ Health; 1981; 8(1-2):241-50. PubMed ID: 7328707
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Asbestos-mediated membrane uptake of benzo[a]pyrene observed by fluorescence spectroscopy.
    Lakowicz JR; Hylden JL
    Nature; 1978 Oct; 275(5679):446-8. PubMed ID: 211435
    [No Abstract]   [Full Text] [Related]  

  • 7. Transfer of polycyclic aromatic hydrocarbons between model membranes: relation to carcinogenicity.
    Plant AL; Pownall HJ; Smith LC
    Chem Biol Interact; 1983 Jun; 44(3):237-46. PubMed ID: 6872092
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phase transitions in lipid membranes induced by carcinogenic aromatic hydrocarbons. A spin label study.
    Sanioto DL; Schreier S
    Biochem Biophys Res Commun; 1975 Nov; 67(2):530-7. PubMed ID: 173319
    [No Abstract]   [Full Text] [Related]  

  • 9. Interactions between polycyclic hydrocarbons and lipids in model membranes [proceedings].
    Laduron-Vancraenbroeck C; Deleers M; Ruysschaert JM
    Arch Int Physiol Biochim; 1979 Dec; 87(5):1025-6. PubMed ID: 94797
    [No Abstract]   [Full Text] [Related]  

  • 10. Surface-dependent transitions during self-assembly of phospholipid membranes on mica, silica, and glass.
    Benes M; Billy D; Benda A; Speijer H; Hof M; Hermens WT
    Langmuir; 2004 Nov; 20(23):10129-37. PubMed ID: 15518504
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A model for the effect of lipid oxidation on diphenylhexatriene fluorescence in phospholipid vesicles.
    Barrow DA; Lentz BR
    Biochim Biophys Acta; 1981 Jul; 645(1):17-23. PubMed ID: 7260083
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Absence of ethanol-induced interdigitation in supported phospholipid bilayers on silica surfaces.
    Miszta A; van Deursen B; Schoufs R; Hof M; Hermens WT
    Langmuir; 2008 Jan; 24(1):19-21. PubMed ID: 18044939
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [On the interaction of polycyclic aromatic hydrocarbons and light with regard to its syncarcinogenic effects (author's transl)].
    Bauer L; Gräf W
    Zentralbl Bakteriol Orig B; 1976 Feb; 161(4):304-16. PubMed ID: 828365
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fluorescence quenching in model membranes. 3. Relationship between calcium adenosinetriphosphatase enzyme activity and the affinity of the protein for phosphatidylcholines with different acyl chain characteristics.
    Caffrey M; Feigenson GW
    Biochemistry; 1981 Mar; 20(7):1949-61. PubMed ID: 6452902
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interactions between silica nanoparticles and phospholipid membranes.
    Kettiger H; Québatte G; Perrone B; Huwyler J
    Biochim Biophys Acta; 2016 Sep; 1858(9):2163-2170. PubMed ID: 27349734
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Use of fluorescent probes that form intramolecular excimers to monitor structural changes in model and biological membranes.
    Melnick RL; Haspel HC; Goldenberg M; Greenbaum LM; Weinstein S
    Biophys J; 1981 Jun; 34(3):499-515. PubMed ID: 7248471
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fluorescence depolarization studies of phase transitions and fluidity in phospholipid bilayers. 2 Two-component phosphatidylcholine liposomes.
    Lentz BR; Barenholz Y; Thompson TE
    Biochemistry; 1976 Oct; 15(20):4529-37. PubMed ID: 974074
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phospholipid order in gel- and fluid-phase cell-size liposomes measured by digitized video fluorescence polarization microscopy.
    Florine-Casteel K
    Biophys J; 1990 Jun; 57(6):1199-215. PubMed ID: 2393705
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fluorimetric detection of phospholipid vesicles bound to planar phospholipid membranes.
    Niles WD; Eisenberg M
    Biophys J; 1985 Aug; 48(2):321-5. PubMed ID: 4052565
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A photophysical model for diphenylhexatriene fluorescence decay in solvents and in phospholipid vesicles.
    Parasassi T; De Stasio G; Rusch RM; Gratton E
    Biophys J; 1991 Feb; 59(2):466-75. PubMed ID: 2009361
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.