These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 202026)

  • 21. Comparison of the membrane association of two antimicrobial peptides, magainin 2 and indolicidin.
    Zhao H; Mattila JP; Holopainen JM; Kinnunen PK
    Biophys J; 2001 Nov; 81(5):2979-91. PubMed ID: 11606308
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Fluorescence measurements of environmental relaxation at the lipid-water interface region of bilayer membranes.
    Easter JH; Detoma RP; Brand L
    Biochim Biophys Acta; 1978 Mar; 508(1):27-38. PubMed ID: 629967
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Interaction of the antimicrobial peptide pheromone Plantaricin A with model membranes: implications for a novel mechanism of action.
    Zhao H; Sood R; Jutila A; Bose S; Fimland G; Nissen-Meyer J; Kinnunen PK
    Biochim Biophys Acta; 2006 Sep; 1758(9):1461-74. PubMed ID: 16806056
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Structural investigations of basic amphipathic model peptides in the presence of lipid vesicles studied by circular dichroism, fluorescence, monolayer and modeling.
    Mangavel C; Maget-Dana R; Tauc P; Brochon JC; Sy D; Reynaud JA
    Biochim Biophys Acta; 1998 May; 1371(2):265-83. PubMed ID: 9630666
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Influence of lipid composition on physical properties and peg-mediated fusion of curved and uncurved model membrane vesicles: "nature's own" fusogenic lipid bilayer.
    Haque ME; McIntosh TJ; Lentz BR
    Biochemistry; 2001 Apr; 40(14):4340-8. PubMed ID: 11284690
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Carcinogenic and non-carcinogenic aromatic hydrocarbons in lipid membranes. A fluorescence study of pyrene and benzo[a]pyrene.
    Sanioto DL; Quina FH; Schreier S
    Braz J Med Biol Res; 1986; 19(6):691-8. PubMed ID: 3651623
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Organization and interaction of cholesterol and phosphatidylcholine in model bilayer membranes.
    Hyslop PA; Morel B; Sauerheber RD
    Biochemistry; 1990 Jan; 29(4):1025-38. PubMed ID: 2160270
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Fluorescence quenching in model membranes. 1. Characterization of quenching caused by a spin-labeled phospholipid.
    London E; Feigenson GW
    Biochemistry; 1981 Mar; 20(7):1932-8. PubMed ID: 6261807
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Combustion-derived ultrafine particles transport organic toxicants to target respiratory cells.
    Penn A; Murphy G; Barker S; Henk W; Penn L
    Environ Health Perspect; 2005 Aug; 113(8):956-63. PubMed ID: 16079063
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Anthracenyl crown ethers and cryptands as fluorescent probes for solid-phase transitions of phosphatidylcholines: syntheses and phospholipid membrane studies.
    Herrmann U; Tümmler B; Maass G; Koo Tze Mew P; Vögtle F
    Biochemistry; 1984 Aug; 23(18):4059-67. PubMed ID: 6237681
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Health effects of coal mining and combustion: carcinogens and cofactors.
    Falk HL; Jurgelski W
    Environ Health Perspect; 1979 Dec; 33():203-26. PubMed ID: 540618
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Coverage and disruption of phospholipid membranes by oxide nanoparticles.
    Pera H; Nolte TM; Leermakers FA; Kleijn JM
    Langmuir; 2014 Dec; 30(48):14581-90. PubMed ID: 25390582
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Native silica nanoparticles are powerful membrane disruptors.
    Alkhammash HI; Li N; Berthier R; de Planque MR
    Phys Chem Chem Phys; 2015 Jun; 17(24):15547-60. PubMed ID: 25623776
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Coverage-dependent changes of cytochrome c transverse location in phospholipid membranes revealed by FRET.
    Domanov YA; Molotkovsky JG; Gorbenko GP
    Biochim Biophys Acta; 2005 Oct; 1716(1):49-58. PubMed ID: 16183372
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The methods for fractionation, analytical separation and identification of polynuclear aromatic hydrocarbons in complex mixtures.
    Novotny M; Lee ML; Bartle KD
    J Chromatogr Sci; 1974 Oct; 12(10):606-12. PubMed ID: 4416361
    [No Abstract]   [Full Text] [Related]  

  • 36. [Interaction of phospholipid membranes with silica in the presence of polymeric N-oxides].
    Volkova VI; Vasilenko IA; El'tsefon BS; Viktorov AV; Puchkova NG
    Gig Tr Prof Zabol; 1980 Jan; (1):18-22. PubMed ID: 6245019
    [No Abstract]   [Full Text] [Related]  

  • 37. Interaction of gentamicin polycation with model and cell membranes.
    Kovács E; Savopol T; Iordache MM; Săplăcan L; Sobaru I; Istrate C; Mingeot-Leclercq MP; Moisescu MG
    Bioelectrochemistry; 2012 Oct; 87():230-5. PubMed ID: 22522030
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Proton-enhanced 13C nuclear magnetic resonance of lipids and biomembranes.
    Urbina J; Waugh JS
    Proc Natl Acad Sci U S A; 1974 Dec; 71(12):5062-7. PubMed ID: 4531036
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Fluorescence anisotropy measurements of lipid order in plasma membranes and lipid rafts from RBL-2H3 mast cells.
    Gidwani A; Holowka D; Baird B
    Biochemistry; 2001 Oct; 40(41):12422-9. PubMed ID: 11591163
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Fluorescence depolarization studies of phase transitions and fluidity in phospholipid bilayers. 1. Single component phosphatidylcholine liposomes.
    Lentz BR; Barenholz Y; Thompson TE
    Biochemistry; 1976 Oct; 15(20):4521-8. PubMed ID: 974073
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.