These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
243 related articles for article (PubMed ID: 20202682)
1. Poly(ethylene glycol)-grafted poly(propylene fumarate) networks and parabolic dependence of MC3T3 cell behavior on the network composition. Cai L; Wang K; Wang S Biomaterials; 2010 Jun; 31(16):4457-66. PubMed ID: 20202682 [TBL] [Abstract][Full Text] [Related]
2. Distinct cell responses to substrates consisting of poly(ε-caprolactone) and poly(propylene fumarate) in the presence or absence of cross-links. Wang K; Cai L; Hao F; Xu X; Cui M; Wang S Biomacromolecules; 2010 Oct; 11(10):2748-59. PubMed ID: 20822174 [TBL] [Abstract][Full Text] [Related]
3. Parabolic dependence of material properties and cell behavior on the composition of polymer networks via simultaneously controlling crosslinking density and crystallinity. Cai L; Wang S Biomaterials; 2010 Oct; 31(29):7423-34. PubMed ID: 20663551 [TBL] [Abstract][Full Text] [Related]
4. Studies on chemically crosslinkable carboxy terminated-poly(propylene fumarate-co-ethylene glycol)-acrylamide hydrogel as an injectable biomaterial. Kallukalam BC; Jayabalan M; Sankar V Biomed Mater; 2009 Feb; 4(1):015002. PubMed ID: 18981542 [TBL] [Abstract][Full Text] [Related]
5. Evaluation of thermal- and photo-crosslinked biodegradable poly(propylene fumarate)-based networks. Timmer MD; Ambrose CG; Mikos AG J Biomed Mater Res A; 2003 Sep; 66(4):811-8. PubMed ID: 12926033 [TBL] [Abstract][Full Text] [Related]
6. In vitro cytotoxicity of injectable and biodegradable poly(propylene fumarate)-based networks: unreacted macromers, cross-linked networks, and degradation products. Timmer MD; Shin H; Horch RA; Ambrose CG; Mikos AG Biomacromolecules; 2003; 4(4):1026-33. PubMed ID: 12857088 [TBL] [Abstract][Full Text] [Related]
7. Exposed hydroxyapatite particles on the surface of photo-crosslinked nanocomposites for promoting MC3T3 cell proliferation and differentiation. Cai L; Guinn AS; Wang S Acta Biomater; 2011 May; 7(5):2185-99. PubMed ID: 21284960 [TBL] [Abstract][Full Text] [Related]
8. Poly(ethylene glycol)-grafted cyclic acetals based polymer networks with non-water-swellable, biodegradable and surface hydrophilic properties. Yin R; Zhang N; Wu W; Wang K Mater Sci Eng C Mater Biol Appl; 2016 May; 62():137-43. PubMed ID: 26952407 [TBL] [Abstract][Full Text] [Related]
9. Photoinitiated cross-linking of the biodegradable polyester poly(propylene fumarate). Part I. Determination of network structure. Fisher JP; Timmer MD; Holland TA; Dean D; Engel PS; Mikos AG Biomacromolecules; 2003; 4(5):1327-34. PubMed ID: 12959602 [TBL] [Abstract][Full Text] [Related]
10. Nanoreinforcement of poly(propylene fumarate)-based networks with surface modified alumoxane nanoparticles for bone tissue engineering. Horch RA; Shahid N; Mistry AS; Timmer MD; Mikos AG; Barron AR Biomacromolecules; 2004; 5(5):1990-8. PubMed ID: 15360315 [TBL] [Abstract][Full Text] [Related]
11. Development of tissue-engineered substitutes of the ear ossicles: PORP-shaped poly(propylene fumarate)-based scaffolds cultured with human mesenchymal stromal cells. Danti S; D'Alessandro D; Pietrabissa A; Petrini M; Berrettini S J Biomed Mater Res A; 2010 Mar; 92(4):1343-56. PubMed ID: 19353559 [TBL] [Abstract][Full Text] [Related]
12. Studies on biodegradable and crosslinkable poly(castor oil fumarate)/poly(propylene fumarate) composite adhesive as a potential injectable biomaterial. Mitha MK; Jayabalan M J Mater Sci Mater Med; 2009 Dec; 20 Suppl 1():S203-11. PubMed ID: 18592346 [TBL] [Abstract][Full Text] [Related]
13. Fabrication and in vitro degradation of porous fumarate-based polymer/alumoxane nanocomposite scaffolds for bone tissue engineering. Mistry AS; Cheng SH; Yeh T; Christenson E; Jansen JA; Mikos AG J Biomed Mater Res A; 2009 Apr; 89(1):68-79. PubMed ID: 18428800 [TBL] [Abstract][Full Text] [Related]
14. Photoinitiated cross-linking of the biodegradable polyester poly(propylene fumarate). Part II. In vitro degradation. Fisher JP; Holland TA; Dean D; Mikos AG Biomacromolecules; 2003; 4(5):1335-42. PubMed ID: 12959603 [TBL] [Abstract][Full Text] [Related]
15. Size-selective protein adsorption to polystyrene surfaces by self-assembled grafted poly(ethylene glycols) with varied chain lengths. Lazos D; Franzka S; Ulbricht M Langmuir; 2005 Sep; 21(19):8774-84. PubMed ID: 16142960 [TBL] [Abstract][Full Text] [Related]
16. Surface modification of polydimethylsiloxane with photo-grafted poly(ethylene glycol) for micropatterned protein adsorption and cell adhesion. Sugiura S; Edahiro J; Sumaru K; Kanamori T Colloids Surf B Biointerfaces; 2008 Jun; 63(2):301-5. PubMed ID: 18242961 [TBL] [Abstract][Full Text] [Related]
17. Biodegradable photo-crosslinked polymer substrates with concentric microgrooves for regulating MC3T3-E1 cell behavior. Wang K; Cai L; Zhang L; Dong J; Wang S Adv Healthc Mater; 2012 May; 1(3):292-301. PubMed ID: 23184743 [TBL] [Abstract][Full Text] [Related]
18. Effect of hydrophilicity and agmatine modification on degradation of poly(propylene fumarate-co-ethylene glycol) hydrogels. Tanahashi K; Mikos AG J Biomed Mater Res A; 2003 Dec; 67(4):1148-54. PubMed ID: 14624500 [TBL] [Abstract][Full Text] [Related]