These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

89 related articles for article (PubMed ID: 20202777)

  • 1. Hydrophobicity/hydrophilicity descriptors obtained from extrapolated chromatographic retention data as modeling tools for biological distribution: application to some oxime-type acetylcholinesterase reactivators.
    Voicu V; Sora I; Sârbu C; David V; Medvedovici A
    J Pharm Biomed Anal; 2010 Aug; 52(4):508-16. PubMed ID: 20202777
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evaluation of nine oximes on in vivo reactivation of blood, brain, and tissue cholinesterase activity inhibited by organophosphorus nerve agents at lethal dose.
    Shih TM; Skovira JW; O'Donnell JC; McDonough JH
    Toxicol Mech Methods; 2009 Sep; 19(6-7):386-400. PubMed ID: 19778239
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In silico pharmacophore model for tabun-inhibited acetylcholinesterase reactivators: a study of their stereoelectronic properties.
    Bhattacharjee AK; Kuca K; Musilek K; Gordon RK
    Chem Res Toxicol; 2010 Jan; 23(1):26-36. PubMed ID: 20028185
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In vitro oxime protection of human red blood cell acetylcholinesterase inhibited by diisopropyl-fluorophosphate.
    Lorke DE; Hasan MY; Arafat K; Kuca K; Musilek K; Schmitt A; Petroianu GA
    J Appl Toxicol; 2008 May; 28(4):422-9. PubMed ID: 18344198
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The toxicokinetics and toxicodynamics of organophosphonates versus the pharmacokinetics and pharmacodynamics of oxime antidotes: biological consequences.
    Voicu VA; Thiermann H; Rădulescu FS; Mircioiu C; Miron DS
    Basic Clin Pharmacol Toxicol; 2010 Feb; 106(2):73-85. PubMed ID: 19961476
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modelling of retention of pesticides in reversed-phase high-performance liquid chromatography: quantitative structure-retention relationships based on solute quantum-chemical descriptors and experimental (solvatochromic and spin-probe) mobile phase descriptors.
    D'Archivio AA; Ruggieri F; Mazzeo P; Tettamanti E
    Anal Chim Acta; 2007 Jun; 593(2):140-51. PubMed ID: 17543600
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluation of medical countermeasures against organophosphorus compounds: the value of experimental data and computer simulations.
    Worek F; Aurbek N; Herkert NM; John H; Eddleston M; Eyer P; Thiermann H
    Chem Biol Interact; 2010 Sep; 187(1-3):259-64. PubMed ID: 19917271
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chromatographic behaviour of ionic liquid cations in view of quantitative structure-retention relationship.
    Molíková M; Markuszewski MJ; Kaliszan R; Jandera P
    J Chromatogr A; 2010 Feb; 1217(8):1305-12. PubMed ID: 20060528
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In vivo oxime administration does not influence Ellman acetylcholinesterase assay results.
    Guarisco JA; O'Donnell JC; Skovira JW; McDonough JH; Shih TM
    Toxicol Mech Methods; 2009 Sep; 19(6-7):379-85. PubMed ID: 19778238
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interactions of oxime reactivators with diethylphosphoryl adducts of human acetylcholinesterase and its mutant derivatives.
    Grosfeld H; Barak D; Ordentlich A; Velan B; Shafferman A
    Mol Pharmacol; 1996 Sep; 50(3):639-49. PubMed ID: 8794905
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Novel oximes as blood-brain barrier penetrating cholinesterase reactivators.
    Garcia GE; Campbell AJ; Olson J; Moorad-Doctor D; Morthole VI
    Chem Biol Interact; 2010 Sep; 187(1-3):199-206. PubMed ID: 20227398
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Retention study of some cation-type compounds using bile acid sodium salts as ion pairing agents in liquid chromatography.
    Radulescu M; Voicu V; Medvedovici A; David V
    Biomed Chromatogr; 2011 Aug; 25(8):873-8. PubMed ID: 20960581
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enzyme-kinetic investigation of different sarin analogues reacting with human acetylcholinesterase and butyrylcholinesterase.
    Bartling A; Worek F; Szinicz L; Thiermann H
    Toxicology; 2007 Apr; 233(1-3):166-72. PubMed ID: 16904809
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Measurement of K-27, an oxime-type cholinesterase reactivator by high-performance liquid chromatography with electrochemical detection from different biological samples.
    Gyenge M; Kalász H; Petroianu GA; Laufer R; Kuca K; Tekes K
    J Chromatogr A; 2007 Aug; 1161(1-2):146-51. PubMed ID: 17603065
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reactivation and aging kinetics of human acetylcholinesterase inhibited by organophosphonylcholines.
    Worek F; Thiermann H; Szinicz L
    Arch Toxicol; 2004 Apr; 78(4):212-7. PubMed ID: 14647978
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Five oximes (K-27, K-33, K-48, BI-6 and methoxime) in comparison with pralidoxime: in vitro reactivation of red blood cell acetylcholinesterase inhibited by paraoxon.
    Petroianu GA; Arafat K; Kuca K; Kassa J
    J Appl Toxicol; 2006; 26(1):64-71. PubMed ID: 16193529
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Kinetic analysis of interactions of different sarin and tabun analogues with human acetylcholinesterase and oximes: is there a structure-activity relationship?
    Aurbek N; Herkert NM; Koller M; Thiermann H; Worek F
    Chem Biol Interact; 2010 Sep; 187(1-3):215-9. PubMed ID: 20105433
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Application of perfluorinated acids as ion-pairing reagents for reversed-phase chromatography and retention-hydrophobicity relationships studies of selected beta-blockers.
    Flieger J
    J Chromatogr A; 2010 Jan; 1217(4):540-9. PubMed ID: 19969302
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hydrolysis of acetylthiocholine iodide and reactivation of phoxim-inhibited acetylcholinesterase by pralidoxime chloride, obidoxime chloride and trimedoxime.
    Zhang YH; Miyata T; Wu ZJ; Wu G; Xie LH
    Arch Toxicol; 2007 Nov; 81(11):785-92. PubMed ID: 17534602
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Passive diffusion of acetylcholinesterase oxime reactivators through the blood-brain barrier: influence of molecular structure.
    Karasova JZ; Pohanka M; Musilek K; Zemek F; Kuca K
    Toxicol In Vitro; 2010 Sep; 24(6):1838-44. PubMed ID: 20546883
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.