These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 2020278)

  • 61. Influence of gait manipulation on running economy in female distance runners.
    Tseh W; Caputo JL; Morgan DW
    J Sports Sci Med; 2008; 7(1):91-5. PubMed ID: 24150139
    [TBL] [Abstract][Full Text] [Related]  

  • 62. The effect of a cadence retraining protocol on running biomechanics and efficiency: a pilot study.
    Hafer JF; Brown AM; deMille P; Hillstrom HJ; Garber CE
    J Sports Sci; 2015; 33(7):724-31. PubMed ID: 25369525
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Energetically optimal stride frequency is maintained with fatigue in trained ultramarathon runners.
    Vernillo G; Doucende G; Cassirame J; Mourot L
    J Sci Med Sport; 2019 Sep; 22(9):1054-1058. PubMed ID: 31029549
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Daily variability in exercise ventilation.
    Morgan DW; Craib MW; Krahenbuhl GS; Woodall K; Jordan S; Filarski K; Burleson C; Williams T
    Respir Physiol; 1994 May; 96(2-3):345-52. PubMed ID: 8059095
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Better economy in field running than on the treadmill: evidence from high-level distance runners.
    Mooses M; Tippi B; Mooses K; Durussel J; Mäestu J
    Biol Sport; 2015 Jun; 32(2):155-9. PubMed ID: 26060340
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Can the transitions to and from running and the metabolic cost of running be determined from the kinetic energy of running?
    Turvey MT; Holt KG; Lafiandra ME; Fonseca ST
    J Mot Behav; 1999 Sep; 31(3):265-78. PubMed ID: 20037043
    [TBL] [Abstract][Full Text] [Related]  

  • 67. The Effect of a Curved Non-Motorized Treadmill on Running Gait Length, Imbalance and Stride Angle.
    Hatchett A; Armstrong K; Parr B; Crews M; Tant C
    Sports (Basel); 2018 Jun; 6(3):. PubMed ID: 29966259
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Use of energy cost and variability in stride length to assess an optimal running adaptation.
    Brisswalter J; Legros P
    Percept Mot Skills; 1995 Feb; 80(1):99-104. PubMed ID: 7624226
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Stride-to-Stride Variability of the Center of Mass in Male Trained Runners After an Exhaustive Run: A Three Dimensional Movement Variability Analysis With a Subject-Specific Anthropometric Model.
    Möhler F; Stetter B; Müller H; Stein T
    Front Sports Act Living; 2021; 3():665500. PubMed ID: 34109313
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Shorter Ground Contact Time and Better Running Economy: Evidence From Female Kenyan Runners.
    Mooses M; Haile DW; Ojiambo R; Sang M; Mooses K; Lane AR; Hackney AC
    J Strength Cond Res; 2021 Feb; 35(2):481-486. PubMed ID: 29952871
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Is Altitude Training Bad for the Running Mechanics of Middle-Distance Runners?
    Millet GP; Trigueira R; Meyer F; Lemire M
    Int J Sports Physiol Perform; 2021 Sep; 16(9):1359-1362. PubMed ID: 33477107
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Biomechanical Adaptations and Performance Indicators in Short Trail Running.
    Björklund G; Swarén M; Born DP; Stöggl T
    Front Physiol; 2019; 10():506. PubMed ID: 31114511
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Changes in Key Biomechanical Parameters According to the Expertise Level in Runners at Different Running Speeds.
    Fadillioglu C; Möhler F; Reuter M; Stein T
    Bioengineering (Basel); 2022 Oct; 9(11):. PubMed ID: 36354527
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Effects of Massage and Cold Water Immersion After an Exhaustive Run on Running Economy and Biomechanics: A Randomized Controlled Trial.
    Duñabeitia I; Arrieta H; Rodriguez-Larrad A; Gil J; Esain I; Gil SM; Irazusta J; Bidaurrazaga-Letona I
    J Strength Cond Res; 2022 Jan; 36(1):149-155. PubMed ID: 31800477
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Long-range correlations and complex regulation of pacing in long-distance road racing.
    Hoos O; Boeselt T; Steiner M; Hottenrott K; Beneke R
    Int J Sports Physiol Perform; 2014 May; 9(3):544-53. PubMed ID: 24755979
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Predicting Temporal Gait Kinematics From Running Velocity.
    Gray A; Price M; Jenkins D
    J Strength Cond Res; 2021 Sep; 35(9):2379-2382. PubMed ID: 31268993
    [TBL] [Abstract][Full Text] [Related]  

  • 77. New Considerations for Collecting Biomechanical Data Using Wearable Sensors: The Effect of Different Running Environments.
    Benson LC; Clermont CA; Ferber R
    Front Bioeng Biotechnol; 2020; 8():86. PubMed ID: 32117951
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Mechanical and physiological responses to lower extremity loading during running.
    Martin PE
    Med Sci Sports Exerc; 1985 Aug; 17(4):427-33. PubMed ID: 4033398
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Reproducibility of the Evolution of Stride Biomechanics During Exhaustive Runs.
    Martens G; Deflandre D; Schwartz C; Dardenne N; Bury T
    J Hum Kinet; 2018 Sep; 64():57-69. PubMed ID: 30429899
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Influence of stride frequency and length on running mechanics: a systematic review.
    Schubert AG; Kempf J; Heiderscheit BC
    Sports Health; 2014 May; 6(3):210-7. PubMed ID: 24790690
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.