These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 2020298)

  • 1. The role of reperfusion-induced injury in the pathogenesis of the crush syndrome.
    Odeh M
    N Engl J Med; 1991 May; 324(20):1417-22. PubMed ID: 2020298
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Free radical mediated damage in skeletal muscle.
    Lindsay T; Romaschin A; Walker PM
    Microcirc Endothelium Lymphatics; 1989; 5(3-5):157-70. PubMed ID: 2700374
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Oxygen-derived free radical scavengers and skeletal muscle ischemic/reperfusion injury.
    Faust KB; Chiantella V; Vinten-Johansen J; Meredith JH
    Am Surg; 1988 Dec; 54(12):709-19. PubMed ID: 3143290
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Role of heparin in reducing skeletal muscle infarction in ischemia-reperfusion.
    Hobson RW; Neville R; Watanabe B; Canady J; Wright JG; Belkin M
    Microcirc Endothelium Lymphatics; 1989; 5(3-5):259-76. PubMed ID: 2637945
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effect of ischemia-reperfusion derived oxygen free radicals on skeletal muscle calcium metabolism.
    Cronenwett JL; Lee KR; Shlafer M; Zelenock GB
    Microcirc Endothelium Lymphatics; 1989; 5(3-5):171-87. PubMed ID: 2637941
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Biochemical metabolism and oxygen free radical changes following ischemic and reperfused injured limbs. An experimental study].
    Feng F
    Zhonghua Wai Ke Za Zhi; 1990 Nov; 28(11):693-6, 704. PubMed ID: 2086079
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Vitamin E prevents neutrophil accumulation and attenuates tissue damage in ischemic-reperfused human skeletal muscle.
    Formigli L; Ibba Manneschi L; Tani A; Gandini E; Adembri C; Pratesi C; Novelli GP; Zecchi Orlandini S
    Histol Histopathol; 1997 Jul; 12(3):663-9. PubMed ID: 9225148
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reperfusion injury.
    Ar'Rajab A; Dawidson I; Fabia R
    New Horiz; 1996 May; 4(2):224-34. PubMed ID: 8774798
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effect of ischemia reperfusion injury on skeletal muscle.
    Gillani S; Cao J; Suzuki T; Hak DJ
    Injury; 2012 Jun; 43(6):670-5. PubMed ID: 21481870
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inhibition of the compartment syndrome by the ablation of free radical-mediated reperfusion injury.
    Perler BA; Tohmeh AG; Bulkley GB
    Surgery; 1990 Jul; 108(1):40-7. PubMed ID: 2360189
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Renal ischemia reperfusion syndrome].
    Hourmant M
    Nephrologie; 1999; 20(7):371-5. PubMed ID: 10642985
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Zinc chelator treatment in crush syndrome model mice attenuates ischemia-reperfusion-induced muscle injury due to suppressing of neutrophil infiltration.
    Haruta Y; Kobayakawa K; Saiwai H; Hata K; Tamaru T; Iura H; Ono G; Kitade K; Kijima K; Iida K; Kawaguchi K; Matsumoto Y; Kubota K; Maeda T; Konno DJ; Okada S; Nakashima Y
    Sci Rep; 2022 Sep; 12(1):15580. PubMed ID: 36114355
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The role of reperfusion-induced injury in the pathogenesis of the Crush syndrome.
    N Engl J Med; 1991 Nov; 325(19):1383-4. PubMed ID: 1922245
    [No Abstract]   [Full Text] [Related]  

  • 14. Polymorphonuclear leucocytes increase reperfusion injury in skeletal muscle.
    Oredsson S; Qvarfordt P; Plate G
    Int Angiol; 1995 Mar; 14(1):80-8. PubMed ID: 7658110
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role of extracellular Ca2+ in ischemia-reperfusion injury in the isolated perfused rat liver.
    Okuda M; Lee HC; Chance B; Kumar C
    Circ Shock; 1992 Jul; 37(3):209-19. PubMed ID: 1423911
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Correlation between plasma and hepatic phosphatidylcholine hydroperoxide, energy charge, and total glutathione content in ischemia reperfusion injury of rat liver.
    Suzuki M; Fukuhara K; Unno M; Htwe T; Takeuchi H; Kakita T; Matsuno S
    Hepatogastroenterology; 2000; 47(34):1082-9. PubMed ID: 11020884
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanisms of postischemic vascular dysfunction in skeletal muscle: implications for therapeutic intervention.
    Carden DL; Korthuis RJ
    Microcirc Endothelium Lymphatics; 1989; 5(3-5):277-98. PubMed ID: 2700375
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanisms of cellular injury: potential sources of oxygen free radicals in ischemia/reperfusion.
    Inauen W; Suzuki M; Granger DN
    Microcirc Endothelium Lymphatics; 1989; 5(3-5):143-55. PubMed ID: 2700373
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spatial and temporal correlation between leukocyte behavior and cell injury in postischemic rat skeletal muscle microcirculation.
    Suematsu M; DeLano FA; Poole D; Engler RL; Miyasaka M; Zweifach BW; Schmid-Schönbein GW
    Lab Invest; 1994 May; 70(5):684-95. PubMed ID: 7910874
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Free radical scavengers in myocardial ischemia.
    Simpson PJ; Mickelson JK; Lucchesi BR
    Fed Proc; 1987 May; 46(7):2413-21. PubMed ID: 2436951
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.