BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 20203103)

  • 1. Activation of Rac1 is closely related to androgen-independent cell proliferation of prostate cancer cells both in vitro and in vivo.
    Kobayashi T; Inoue T; Shimizu Y; Terada N; Maeno A; Kajita Y; Yamasaki T; Kamba T; Toda Y; Mikami Y; Yamada T; Kamoto T; Ogawa O; Nakamura E
    Mol Endocrinol; 2010 Apr; 24(4):722-34. PubMed ID: 20203103
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Signal transduction pathways in androgen-dependent and -independent prostate cancer cell proliferation.
    Ghosh PM; Malik SN; Bedolla RG; Wang Y; Mikhailova M; Prihoda TJ; Troyer DA; Kreisberg JI
    Endocr Relat Cancer; 2005 Mar; 12(1):119-34. PubMed ID: 15788644
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Deregulation of the Rho GTPase, Rac1, suppresses cyclin-dependent kinase inhibitor p21(CIP1) levels in androgen-independent human prostate cancer cells.
    Knight-Krajewski S; Welsh CF; Liu Y; Lyons LS; Faysal JM; Yang ES; Burnstein KL
    Oncogene; 2004 Jul; 23(32):5513-22. PubMed ID: 15077174
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Signaling Network Controlling Androgenic Repression of c-Fos Protein in Prostate Adenocarcinoma Cells.
    Shankar E; Song K; Corum SL; Bane KL; Wang H; Kao HY; Danielpour D
    J Biol Chem; 2016 Mar; 291(11):5512-5526. PubMed ID: 26786102
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Changes in androgen receptor nongenotropic signaling correlate with transition of LNCaP cells to androgen independence.
    Unni E; Sun S; Nan B; McPhaul MJ; Cheskis B; Mancini MA; Marcelli M
    Cancer Res; 2004 Oct; 64(19):7156-68. PubMed ID: 15466214
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Progression of LNCaP prostate tumor cells during androgen deprivation: hormone-independent growth, repression of proliferation by androgen, and role for p27Kip1 in androgen-induced cell cycle arrest.
    Kokontis JM; Hay N; Liao S
    Mol Endocrinol; 1998 Jul; 12(7):941-53. PubMed ID: 9658399
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ligand-independent activation of androgen receptors by Rho GTPase signaling in prostate cancer.
    Lyons LS; Rao S; Balkan W; Faysal J; Maiorino CA; Burnstein KL
    Mol Endocrinol; 2008 Mar; 22(3):597-608. PubMed ID: 18079321
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Androgen suppresses proliferation of castration-resistant LNCaP 104-R2 prostate cancer cells through androgen receptor, Skp2, and c-Myc.
    Chuu CP; Kokontis JM; Hiipakka RA; Fukuchi J; Lin HP; Lin CY; Huo C; Su LC; Liao S
    Cancer Sci; 2011 Nov; 102(11):2022-8. PubMed ID: 21781227
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The hippo pathway effector YAP regulates motility, invasion, and castration-resistant growth of prostate cancer cells.
    Zhang L; Yang S; Chen X; Stauffer S; Yu F; Lele SM; Fu K; Datta K; Palermo N; Chen Y; Dong J
    Mol Cell Biol; 2015 Apr; 35(8):1350-62. PubMed ID: 25645929
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Requirement of androgen-dependent activation of protein kinase Czeta for androgen-dependent cell proliferation in LNCaP Cells and its roles in transition to androgen-independent cells.
    Inoue T; Yoshida T; Shimizu Y; Kobayashi T; Yamasaki T; Toda Y; Segawa T; Kamoto T; Nakamura E; Ogawa O
    Mol Endocrinol; 2006 Dec; 20(12):3053-69. PubMed ID: 16931574
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reciprocal feedback inhibition of the androgen receptor and PI3K as a novel therapy for castrate-sensitive and -resistant prostate cancer.
    Qi W; Morales C; Cooke LS; Johnson B; Somer B; Mahadevan D
    Oncotarget; 2015 Dec; 6(39):41976-87. PubMed ID: 26506516
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Difference in protein expression profile and chemotherapy drugs response of different progression stages of LNCaP sublines and other human prostate cancer cells.
    Lin HP; Lin CY; Hsiao PH; Wang HD; Jiang SS; Hsu JM; Jim WT; Chen M; Kung HJ; Chuu CP
    PLoS One; 2013; 8(12):e82625. PubMed ID: 24349321
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Apocynin, an NADPH oxidase inhibitor, suppresses progression of prostate cancer via Rac1 dephosphorylation.
    Suzuki S; Pitchakarn P; Sato S; Shirai T; Takahashi S
    Exp Toxicol Pathol; 2013 Nov; 65(7-8):1035-41. PubMed ID: 23664830
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Regulation of androgen receptor transactivity and mTOR-S6 kinase pathway by Rheb in prostate cancer cell proliferation.
    Kobayashi T; Shimizu Y; Terada N; Yamasaki T; Nakamura E; Toda Y; Nishiyama H; Kamoto T; Ogawa O; Inoue T
    Prostate; 2010 Jun; 70(8):866-74. PubMed ID: 20127734
    [TBL] [Abstract][Full Text] [Related]  

  • 15. PrLZ protects prostate cancer cells from apoptosis induced by androgen deprivation via the activation of Stat3/Bcl-2 pathway.
    Zhang D; He D; Xue Y; Wang R; Wu K; Xie H; Zeng J; Wang X; Zhau HE; Chung LW; Chang LS; Li L
    Cancer Res; 2011 Mar; 71(6):2193-202. PubMed ID: 21385902
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The microRNA -23b/-27b cluster suppresses the metastatic phenotype of castration-resistant prostate cancer cells.
    Ishteiwy RA; Ward TM; Dykxhoorn DM; Burnstein KL
    PLoS One; 2012; 7(12):e52106. PubMed ID: 23300597
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A concentrated aglycone isoflavone preparation (GCP) that demonstrates potent anti-prostate cancer activity in vitro and in vivo.
    Bemis DL; Capodice JL; Desai M; Buttyan R; Katz AE
    Clin Cancer Res; 2004 Aug; 10(15):5282-92. PubMed ID: 15297432
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification of kinases regulating prostate cancer cell growth using an RNAi phenotypic screen.
    Whitworth H; Bhadel S; Ivey M; Conaway M; Spencer A; Hernan R; Holemon H; Gioeli D
    PLoS One; 2012; 7(6):e38950. PubMed ID: 22761715
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Overexpression of insulin-like growth factor binding protein-5 helps accelerate progression to androgen-independence in the human prostate LNCaP tumor model through activation of phosphatidylinositol 3'-kinase pathway.
    Miyake H; Nelson C; Rennie PS; Gleave ME
    Endocrinology; 2000 Jun; 141(6):2257-65. PubMed ID: 10830316
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Androgenic regulation of hedgehog signaling pathway components in prostate cancer cells.
    Chen M; Tanner M; Levine AC; Levina E; Ohouo P; Buttyan R
    Cell Cycle; 2009 Jan; 8(1):149-57. PubMed ID: 19158486
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.