These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
5. Characterization of oculomotor and visual activities in the primate pedunculopontine tegmental nucleus during visually guided saccade tasks. Okada K; Kobayashi Y Eur J Neurosci; 2009 Dec; 30(11):2211-23. PubMed ID: 20128856 [TBL] [Abstract][Full Text] [Related]
6. Neural control of visual search by frontal eye field: effects of unexpected target displacement on visual selection and saccade preparation. Murthy A; Ray S; Shorter SM; Schall JD; Thompson KG J Neurophysiol; 2009 May; 101(5):2485-506. PubMed ID: 19261711 [TBL] [Abstract][Full Text] [Related]
7. Attention governs action in the primate frontal eye field. Schafer RJ; Moore T Neuron; 2007 Nov; 56(3):541-51. PubMed ID: 17988636 [TBL] [Abstract][Full Text] [Related]
8. Priming in macaque frontal cortex during popout visual search: feature-based facilitation and location-based inhibition of return. Bichot NP; Schall JD J Neurosci; 2002 Jun; 22(11):4675-85. PubMed ID: 12040074 [TBL] [Abstract][Full Text] [Related]
9. Pre-excitatory pause in frontal eye field responses. Sato T; Schall JD Exp Brain Res; 2001 Jul; 139(1):53-8. PubMed ID: 11482843 [TBL] [Abstract][Full Text] [Related]
10. Difficulty of visual search modulates neuronal interactions and response variability in the frontal eye field. Cohen JY; Pouget P; Woodman GF; Subraveti CR; Schall JD; Rossi AF J Neurophysiol; 2007 Nov; 98(5):2580-7. PubMed ID: 17855586 [TBL] [Abstract][Full Text] [Related]
11. Differential temporal storage capacity in the baseline activity of neurons in macaque frontal eye field and area V4. Ogawa T; Komatsu H J Neurophysiol; 2010 May; 103(5):2433-45. PubMed ID: 20220072 [TBL] [Abstract][Full Text] [Related]
12. Effects of stimulus-response compatibility on neural selection in frontal eye field. Sato TR; Schall JD Neuron; 2003 May; 38(4):637-48. PubMed ID: 12765614 [TBL] [Abstract][Full Text] [Related]
13. Frontal eye field activity before visual search errors reveals the integration of bottom-up and top-down salience. Thompson KG; Bichot NP; Sato TR J Neurophysiol; 2005 Jan; 93(1):337-51. PubMed ID: 15317836 [TBL] [Abstract][Full Text] [Related]
14. Relation of frontal eye field activity to saccade initiation during a countermanding task. Brown JW; Hanes DP; Schall JD; Stuphorn V Exp Brain Res; 2008 Sep; 190(2):135-51. PubMed ID: 18604527 [TBL] [Abstract][Full Text] [Related]
15. Predictive activity in macaque frontal eye field neurons during natural scene searching. Phillips AN; Segraves MA J Neurophysiol; 2010 Mar; 103(3):1238-52. PubMed ID: 20018833 [TBL] [Abstract][Full Text] [Related]
16. Frontal eye field contributions to rapid corrective saccades. Murthy A; Ray S; Shorter SM; Priddy EG; Schall JD; Thompson KG J Neurophysiol; 2007 Feb; 97(2):1457-69. PubMed ID: 17135479 [TBL] [Abstract][Full Text] [Related]
18. What the brain stem tells the frontal cortex. I. Oculomotor signals sent from superior colliculus to frontal eye field via mediodorsal thalamus. Sommer MA; Wurtz RH J Neurophysiol; 2004 Mar; 91(3):1381-402. PubMed ID: 14573558 [TBL] [Abstract][Full Text] [Related]
19. Transition from Target to Gaze Coding in Primate Frontal Eye Field during Memory Delay and Memory-Motor Transformation. Sajad A; Sadeh M; Yan X; Wang H; Crawford JD eNeuro; 2016; 3(2):. PubMed ID: 27092335 [TBL] [Abstract][Full Text] [Related]