These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
347 related articles for article (PubMed ID: 20203190)
1. Critical period for inhibitory plasticity in rodent binocular V1. Maffei A; Lambo ME; Turrigiano GG J Neurosci; 2010 Mar; 30(9):3304-9. PubMed ID: 20203190 [TBL] [Abstract][Full Text] [Related]
2. Difference in binocularity and ocular dominance plasticity between GABAergic and excitatory cortical neurons. Kameyama K; Sohya K; Ebina T; Fukuda A; Yanagawa Y; Tsumoto T J Neurosci; 2010 Jan; 30(4):1551-9. PubMed ID: 20107082 [TBL] [Abstract][Full Text] [Related]
3. Vascular endothelial growth factor B prevents the shift in the ocular dominance distribution of visual cortical neurons in monocularly deprived rats. Shan L; Yong H; Song Q; Wei Y; Qin R; Zhang G; Xu M; Zhang S Exp Eye Res; 2013 Apr; 109():17-21. PubMed ID: 23370270 [TBL] [Abstract][Full Text] [Related]
4. Binocular input coincidence mediates critical period plasticity in the mouse primary visual cortex. Chen XJ; Rasch MJ; Chen G; Ye CQ; Wu S; Zhang XH J Neurosci; 2014 Feb; 34(8):2940-55. PubMed ID: 24553935 [TBL] [Abstract][Full Text] [Related]
5. A disinhibitory microcircuit initiates critical-period plasticity in the visual cortex. Kuhlman SJ; Olivas ND; Tring E; Ikrar T; Xu X; Trachtenberg JT Nature; 2013 Sep; 501(7468):543-6. PubMed ID: 23975100 [TBL] [Abstract][Full Text] [Related]
6. Involvement of T-type Ca2+ channels in the potentiation of synaptic and visual responses during the critical period in rat visual cortex. Yoshimura Y; Inaba M; Yamada K; Kurotani T; Begum T; Reza F; Maruyama T; Komatsu Y Eur J Neurosci; 2008 Aug; 28(4):730-43. PubMed ID: 18657180 [TBL] [Abstract][Full Text] [Related]
7. Elimination of inhibitory synapses is a major component of adult ocular dominance plasticity. van Versendaal D; Rajendran R; Saiepour MH; Klooster J; Smit-Rigter L; Sommeijer JP; De Zeeuw CI; Hofer SB; Heimel JA; Levelt CN Neuron; 2012 Apr; 74(2):374-83. PubMed ID: 22542189 [TBL] [Abstract][Full Text] [Related]
9. Plasticity in the visual system: role of neurotrophins and electrical activity. Maffei L Arch Ital Biol; 2002 Oct; 140(4):341-6. PubMed ID: 12228987 [TBL] [Abstract][Full Text] [Related]
10. Equalization of ocular dominance columns induced by an activity-dependent learning rule and the maturation of inhibition. Toyoizumi T; Miller KD J Neurosci; 2009 May; 29(20):6514-25. PubMed ID: 19458222 [TBL] [Abstract][Full Text] [Related]
11. A theory of the transition to critical period plasticity: inhibition selectively suppresses spontaneous activity. Toyoizumi T; Miyamoto H; Yazaki-Sugiyama Y; Atapour N; Hensch TK; Miller KD Neuron; 2013 Oct; 80(1):51-63. PubMed ID: 24094102 [TBL] [Abstract][Full Text] [Related]
13. Ocular dominance columns in V1 are more susceptible than associated callosal patches to imbalance of eye input during precritical and critical periods. Olavarria JF; Laing RJ; Andelin AK J Comp Neurol; 2021 Aug; 529(11):2883-2910. PubMed ID: 33683706 [TBL] [Abstract][Full Text] [Related]
14. Synaptic and intrinsic homeostatic mechanisms cooperate to increase L2/3 pyramidal neuron excitability during a late phase of critical period plasticity. Lambo ME; Turrigiano GG J Neurosci; 2013 May; 33(20):8810-9. PubMed ID: 23678123 [TBL] [Abstract][Full Text] [Related]
15. Layer-specific Developmental Changes in Excitation and Inhibition in Rat Primary Visual Cortex. Tatti R; Swanson OK; Lee MSE; Maffei A eNeuro; 2017; 4(6):. PubMed ID: 29379869 [TBL] [Abstract][Full Text] [Related]
16. Inhibition of matrix metalloproteinases prevents the potentiation of nondeprived-eye responses after monocular deprivation in juvenile rats. Spolidoro M; Putignano E; Munafò C; Maffei L; Pizzorusso T Cereb Cortex; 2012 Mar; 22(3):725-34. PubMed ID: 21685398 [TBL] [Abstract][Full Text] [Related]
17. Preserved excitatory-inhibitory balance of cortical synaptic inputs following deprived eye stimulation after a saturating period of monocular deprivation in rats. Iurilli G; Olcese U; Medini P PLoS One; 2013; 8(12):e82044. PubMed ID: 24349181 [TBL] [Abstract][Full Text] [Related]
18. Experience-dependent switch in sign and mechanisms for plasticity in layer 4 of primary visual cortex. Wang L; Fontanini A; Maffei A J Neurosci; 2012 Aug; 32(31):10562-73. PubMed ID: 22855806 [TBL] [Abstract][Full Text] [Related]
19. Recovery of cortical binocularity and orientation selectivity after the critical period for ocular dominance plasticity. Liao DS; Krahe TE; Prusky GT; Medina AE; Ramoa AS J Neurophysiol; 2004 Oct; 92(4):2113-21. PubMed ID: 15102897 [TBL] [Abstract][Full Text] [Related]
20. Recovery of binocular responses after brief monocular deprivation in kittens. Kameyama K; Hata Y; Tsumoto T Neuroreport; 2005 Sep; 16(13):1447-50. PubMed ID: 16110269 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]