BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

224 related articles for article (PubMed ID: 20203204)

  • 1. Control of rhodopsin's active lifetime by arrestin-1 expression in mammalian rods.
    Gross OP; Burns ME
    J Neurosci; 2010 Mar; 30(9):3450-7. PubMed ID: 20203204
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Functional comparisons of visual arrestins in rod photoreceptors of transgenic mice.
    Chan S; Rubin WW; Mendez A; Liu X; Song X; Hanson SM; Craft CM; Gurevich VV; Burns ME; Chen J
    Invest Ophthalmol Vis Sci; 2007 May; 48(5):1968-75. PubMed ID: 17460248
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rhodopsin kinase and arrestin binding control the decay of photoactivated rhodopsin and dark adaptation of mouse rods.
    Frederiksen R; Nymark S; Kolesnikov AV; Berry JD; Adler L; Koutalos Y; Kefalov VJ; Cornwall MC
    J Gen Physiol; 2016 Jul; 148(1):1-11. PubMed ID: 27353443
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Control of rhodopsin activity in vision.
    Baylor DA; Burns ME
    Eye (Lond); 1998; 12 ( Pt 3b)():521-5. PubMed ID: 9775212
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Prolonged photoresponses in transgenic mouse rods lacking arrestin.
    Xu J; Dodd RL; Makino CL; Simon MI; Baylor DA; Chen J
    Nature; 1997 Oct; 389(6650):505-9. PubMed ID: 9333241
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Arrestin Facilitates Rhodopsin Dephosphorylation
    Hsieh CL; Yao Y; Gurevich VV; Chen J
    J Neurosci; 2022 Apr; 42(17):3537-3545. PubMed ID: 35332081
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Light-dependent redistribution of arrestin in vertebrate rods is an energy-independent process governed by protein-protein interactions.
    Nair KS; Hanson SM; Mendez A; Gurevich EV; Kennedy MJ; Shestopalov VI; Vishnivetskiy SA; Chen J; Hurley JB; Gurevich VV; Slepak VZ
    Neuron; 2005 May; 46(4):555-67. PubMed ID: 15944125
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Background light produces a recoverin-dependent modulation of activated-rhodopsin lifetime in mouse rods.
    Chen CK; Woodruff ML; Chen FS; Chen D; Fain GL
    J Neurosci; 2010 Jan; 30(4):1213-20. PubMed ID: 20107049
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multiple phosphorylation sites confer reproducibility of the rod's single-photon responses.
    Doan T; Mendez A; Detwiler PB; Chen J; Rieke F
    Science; 2006 Jul; 313(5786):530-3. PubMed ID: 16873665
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantitative modeling of the molecular steps underlying shut-off of rhodopsin activity in rod phototransduction.
    Lamb TD; Kraft TW
    Mol Vis; 2016; 22():674-96. PubMed ID: 27375353
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Deletion of Protein Phosphatase 2A Accelerates Retinal Degeneration in GRK1- and Arr1-Deficient Mice.
    Kolesnikov AV; Luu J; Jin H; Palczewski K; Kefalov VJ
    Invest Ophthalmol Vis Sci; 2022 Jul; 63(8):18. PubMed ID: 35861670
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Deactivation of phosphorylated and nonphosphorylated rhodopsin by arrestin splice variants.
    Burns ME; Mendez A; Chen CK; Almuete A; Quillinan N; Simon MI; Baylor DA; Chen J
    J Neurosci; 2006 Jan; 26(3):1036-44. PubMed ID: 16421323
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mouse cones require an arrestin for normal inactivation of phototransduction.
    Nikonov SS; Brown BM; Davis JA; Zuniga FI; Bragin A; Pugh EN; Craft CM
    Neuron; 2008 Aug; 59(3):462-74. PubMed ID: 18701071
    [TBL] [Abstract][Full Text] [Related]  

  • 14. GRK1-dependent phosphorylation of S and M opsins and their binding to cone arrestin during cone phototransduction in the mouse retina.
    Zhu X; Brown B; Li A; Mears AJ; Swaroop A; Craft CM
    J Neurosci; 2003 Jul; 23(14):6152-60. PubMed ID: 12853434
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Kinetics of turn-offs of frog rod phototransduction cascade.
    Astakhova LA; Firsov ML; Govardovskii VI
    J Gen Physiol; 2008 Nov; 132(5):587-604. PubMed ID: 18955597
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Arrestin competition influences the kinetics and variability of the single-photon responses of mammalian rod photoreceptors.
    Doan T; Azevedo AW; Hurley JB; Rieke F
    J Neurosci; 2009 Sep; 29(38):11867-79. PubMed ID: 19776273
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of Rhodopsin Phosphorylation on Dark Adaptation in Mouse Rods.
    Berry J; Frederiksen R; Yao Y; Nymark S; Chen J; Cornwall C
    J Neurosci; 2016 Jun; 36(26):6973-87. PubMed ID: 27358455
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhanced arrestin facilitates recovery and protects rods lacking rhodopsin phosphorylation.
    Song X; Vishnivetskiy SA; Gross OP; Emelianoff K; Mendez A; Chen J; Gurevich EV; Burns ME; Gurevich VV
    Curr Biol; 2009 Apr; 19(8):700-5. PubMed ID: 19361994
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Abnormal photoresponses and light-induced apoptosis in rods lacking rhodopsin kinase.
    Chen CK; Burns ME; Spencer M; Niemi GA; Chen J; Hurley JB; Baylor DA; Simon MI
    Proc Natl Acad Sci U S A; 1999 Mar; 96(7):3718-22. PubMed ID: 10097103
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Light-dependent translocation of arrestin in the absence of rhodopsin phosphorylation and transducin signaling.
    Mendez A; Lem J; Simon M; Chen J
    J Neurosci; 2003 Apr; 23(8):3124-9. PubMed ID: 12716919
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.