These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
325 related articles for article (PubMed ID: 20203213)
21. Are sparse-coding simple cell receptive field models physiologically plausible? Watters PA J Integr Neurosci; 2006 Sep; 5(3):333-53. PubMed ID: 17125157 [TBL] [Abstract][Full Text] [Related]
22. A precise form of divisive suppression supports population coding in the primary visual cortex. MacEvoy SP; Tucker TR; Fitzpatrick D Nat Neurosci; 2009 May; 12(5):637-45. PubMed ID: 19396165 [TBL] [Abstract][Full Text] [Related]
23. A synaptic explanation of suppression in visual cortex. Carandini M; Heeger DJ; Senn W J Neurosci; 2002 Nov; 22(22):10053-65. PubMed ID: 12427863 [TBL] [Abstract][Full Text] [Related]
24. Brightness processing in the visual cortex. Salmela VR; Laurinen PI Neurosci Lett; 2007 Jun; 420(2):160-2. PubMed ID: 17512119 [TBL] [Abstract][Full Text] [Related]
25. A single mechanism can explain the speed tuning properties of MT and V1 complex neurons. Perrone JA J Neurosci; 2006 Nov; 26(46):11987-91. PubMed ID: 17108172 [TBL] [Abstract][Full Text] [Related]
26. Spatial summation processes in the receptive fields of visually driven neurons of the cat's cortical area 21a. Harutiunian-Kozak BA; Sharanbekian AB; Kazarian AL; Grigorian GG; Kozak JA; Sarkisyan GS; Khachvankian DK Arch Ital Biol; 2006 Aug; 144(3-4):127-44. PubMed ID: 16977829 [TBL] [Abstract][Full Text] [Related]
27. Model-based analysis of excitatory lateral connections in the visual cortex. Buzás P; Kovács K; Ferecskó AS; Budd JM; Eysel UT; Kisvárday ZF J Comp Neurol; 2006 Dec; 499(6):861-81. PubMed ID: 17072837 [TBL] [Abstract][Full Text] [Related]
28. Different types of signal coupling in the visual cortex related to neural mechanisms of associative processing and perception. Eckhorn R; Gail AM; Bruns A; Gabriel A; Al-Shaikhli B; Saam M IEEE Trans Neural Netw; 2004 Sep; 15(5):1039-52. PubMed ID: 15484881 [TBL] [Abstract][Full Text] [Related]
29. Sharper orientation tuning of the extraclassical suppressive-surround due to a neuron's location in the V1 orientation map emerges late in time. Liu YJ; Hashemi-Nezhad M; Lyon DC Neuroscience; 2013 Jan; 229():100-17. PubMed ID: 23159311 [TBL] [Abstract][Full Text] [Related]
30. The influence of cortical feature maps on the encoding of the orientation of a short line. Shokhirev KN; Kumar T; Glaser DA J Comput Neurosci; 2006 Jun; 20(3):285-97. PubMed ID: 16683208 [TBL] [Abstract][Full Text] [Related]
31. Visual gamma oscillations: waves, correlations, and other phenomena, including comparison with experimental data. Robinson PA Biol Cybern; 2007 Oct; 97(4):317-35. PubMed ID: 17899164 [TBL] [Abstract][Full Text] [Related]
32. Mechanisms underlying contrast-dependent orientation selectivity in mouse V1. Dai WP; Zhou D; McLaughlin DW; Cai D Proc Natl Acad Sci U S A; 2018 Nov; 115(45):11619-11624. PubMed ID: 30337480 [TBL] [Abstract][Full Text] [Related]
33. Asymmetric synaptic depression in cortical networks. Chelaru MI; Dragoi V Cereb Cortex; 2008 Apr; 18(4):771-88. PubMed ID: 17693394 [TBL] [Abstract][Full Text] [Related]
34. Orientation tuning of the suppressive extraclassical surround depends on intrinsic organization of V1. Hashemi-Nezhad M; Lyon DC Cereb Cortex; 2012 Feb; 22(2):308-26. PubMed ID: 21666124 [TBL] [Abstract][Full Text] [Related]
35. Effects of inhibitory gain and conductance fluctuations in a simple model for contrast-invariant orientation tuning in cat V1. Palmer SE; Miller KD J Neurophysiol; 2007 Jul; 98(1):63-78. PubMed ID: 17507506 [TBL] [Abstract][Full Text] [Related]