These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 20203353)

  • 1. Controlling the morphology of multi-branched gold nanoparticles.
    Ahmed W; Kooij ES; van Silfhout A; Poelsema B
    Nanotechnology; 2010 Mar; 21(12):125605. PubMed ID: 20203353
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Functionalization of silver and gold nanoparticles using amino acid conjugated bile salts with tunable longitudinal plasmon resonance.
    Kasthuri J; Rajendiran N
    Colloids Surf B Biointerfaces; 2009 Oct; 73(2):387-93. PubMed ID: 19577440
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Precise seed-mediated growth and size-controlled synthesis of palladium nanoparticles using a green chemistry approach.
    Liu J; He F; Gunn TM; Zhao D; Roberts CB
    Langmuir; 2009 Jun; 25(12):7116-28. PubMed ID: 19309120
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Morphology-selective synthesis of polyhedral gold nanoparticles: what factors control the size and morphology of gold nanoparticles in a wet-chemical process.
    Lee JH; Kamada K; Enomoto N; Hojo J
    J Colloid Interface Sci; 2007 Dec; 316(2):887-92. PubMed ID: 17897663
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synthesis of gold nanotriangles and silver nanoparticles using Aloe vera plant extract.
    Chandran SP; Chaudhary M; Pasricha R; Ahmad A; Sastry M
    Biotechnol Prog; 2006; 22(2):577-83. PubMed ID: 16599579
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synthesis of branched gold nanocrystals by a seeding growth approach.
    Kuo CH; Huang MH
    Langmuir; 2005 Mar; 21(5):2012-6. PubMed ID: 15723503
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Formation of high-density crystalline-shape gold nanoparticles on indium tin oxide surfaces: effects of alcohothermal seeding.
    Umar AA; Salleh MM; Majlis BY; Oyama M
    J Nanosci Nanotechnol; 2011 Jun; 11(6):4974-80. PubMed ID: 21770130
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tailoring surface plasmons through the morphology and assembly of metal nanoparticles.
    Liz-Marzán LM
    Langmuir; 2006 Jan; 22(1):32-41. PubMed ID: 16378396
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Defining rules for the shape evolution of gold nanoparticles.
    Langille MR; Personick ML; Zhang J; Mirkin CA
    J Am Chem Soc; 2012 Sep; 134(35):14542-54. PubMed ID: 22920241
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Seed-mediated synthesis of branched gold nanoparticles with the assistance of citrate and their surface-enhanced Raman scattering properties.
    Zou X; Ying E; Dong S
    Nanotechnology; 2006 Sep; 17(18):4758-64. PubMed ID: 21727609
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Size-controlled synthesis of monodispersed silver nanoparticles capped by long-chain alkyl carboxylates from silver carboxylate and tertiary amine.
    Yamamoto M; Kashiwagi Y; Nakamoto M
    Langmuir; 2006 Sep; 22(20):8581-6. PubMed ID: 16981779
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Aggregative growth in the size-controlled growth of monodispersed gold nanoparticles.
    Njoki PN; Luo J; Kamundi MM; Lim S; Zhong CJ
    Langmuir; 2010 Aug; 26(16):13622-9. PubMed ID: 20695612
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A new route to obtain high-yield multiple-shaped gold nanoparticles in aqueous solution using microwave irradiation.
    Kundu S; Peng L; Liang H
    Inorg Chem; 2008 Jul; 47(14):6344-52. PubMed ID: 18563880
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Shape-controlled synthesis of gold and silver nanoparticles.
    Sun Y; Xia Y
    Science; 2002 Dec; 298(5601):2176-9. PubMed ID: 12481134
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A facile, water-based synthesis of highly branched nanostructures of silver.
    Wang Y; Camargo PH; Skrabalak SE; Gu H; Xia Y
    Langmuir; 2008 Oct; 24(20):12042-6. PubMed ID: 18817421
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Light emitting diode irradiation can control the morphology and optical properties of silver nanoparticles.
    Stamplecoskie KG; Scaiano JC
    J Am Chem Soc; 2010 Feb; 132(6):1825-7. PubMed ID: 20102152
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Simple reductant concentration-dependent shape control of polyhedral gold nanoparticles and their plasmonic properties.
    Eguchi M; Mitsui D; Wu HL; Sato R; Teranishi T
    Langmuir; 2012 Jun; 28(24):9021-6. PubMed ID: 22404172
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rapid synthesis of Au, Ag, and bimetallic Au core-Ag shell nanoparticles using Neem (Azadirachta indica) leaf broth.
    Shankar SS; Rai A; Ahmad A; Sastry M
    J Colloid Interface Sci; 2004 Jul; 275(2):496-502. PubMed ID: 15178278
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantitation of metal content in the silver-assisted growth of gold nanorods.
    Orendorff CJ; Murphy CJ
    J Phys Chem B; 2006 Mar; 110(9):3990-4. PubMed ID: 16509687
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modulation of size and shape of Au nanoparticles using amino-X-shaped poly(ethylene oxide)-poly(propylene oxide) block copolymers.
    Goy-López S; Taboada P; Cambón A; Juárez J; Alvarez-Lorenzo C; Concheiro A; Mosquera V
    J Phys Chem B; 2010 Jan; 114(1):66-76. PubMed ID: 19968275
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.