BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 20203478)

  • 1. Cetacean brain evolution: Dwarf sperm whale (Kogia sima) and common dolphin (Delphinus delphis) - An investigation with high-resolution 3D MRI.
    Oelschläger HH; Ridgway SH; Knauth M
    Brain Behav Evol; 2010; 75(1):33-62. PubMed ID: 20203478
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Morphology and evolutionary biology of the dolphin (Delphinus sp.) brain--MR imaging and conventional histology.
    Oelschläger HH; Haas-Rioth M; Fung C; Ridgway SH; Knauth M
    Brain Behav Evol; 2008; 71(1):68-86. PubMed ID: 17975302
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The central vestibular complex in dolphins and humans: functional implications of Deiters' nucleus.
    Kern A; Seidel K; Oelschläger HH
    Brain Behav Evol; 2009; 73(2):102-10. PubMed ID: 19390175
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Neuroanatomy of the common dolphin (Delphinus delphis) as revealed by magnetic resonance imaging (MRI).
    Marino L; Sudheimer KD; Pabst DA; McLellan WA; Filsoof D; Johnson JI
    Anat Rec; 2002 Dec; 268(4):411-29. PubMed ID: 12420290
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The dolphin brain--a challenge for synthetic neurobiology.
    Oelschläger HH
    Brain Res Bull; 2008 Mar; 75(2-4):450-9. PubMed ID: 18331914
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Histological, immunohistochemical and pathological features of the pituitary gland of odontocete cetaceans from the Western gulf of Mexico.
    Cowan DF; Haubold EM; Tajima Y
    J Comp Pathol; 2008; 139(2-3):67-80. PubMed ID: 18621384
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Marine mammal strandings in the New Caledonia region, Southwest Pacific.
    Borsa P
    C R Biol; 2006 Apr; 329(4):277-88. PubMed ID: 16644500
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Magnetic resonance images of the brain of a dwarf sperm whale (Kogia simus).
    Marino L; Sudheimer K; Pabst DA; McLellan WA; Johnson JI
    J Anat; 2003 Jul; 203(1):57-76. PubMed ID: 12892406
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The dolphin cochlear nucleus: topography, histology and functional implications.
    Malkemper EP; Oelschläger HH; Huggenberger S
    J Morphol; 2012 Feb; 273(2):173-85. PubMed ID: 21987441
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Volumetric neuroimaging of the atlantic white-sided dolphin (Lagenorhynchus acutus) brain from in situ magnetic resonance images.
    Montie EW; Schneider G; Ketten DR; Marino L; Touhey KE; Hahn ME
    Anat Rec (Hoboken); 2008 Mar; 291(3):263-82. PubMed ID: 18286607
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The afferent connections of the main and the accessory olfactory bulb formations in the rat: an experimental HRP-study.
    de Olmos J; Hardy H; Heimer L
    J Comp Neurol; 1978 Sep; 181(2):213-44. PubMed ID: 690266
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The limbic lobe of the dolphin brain: a quantitative cytoarchitectonic study.
    Morgane PJ; McFarland WL; Jacobs MS
    J Hirnforsch; 1982; 23(5):465-552. PubMed ID: 7161482
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Cetacean echolocation and V.A. Kozak's hypothesia concerning acoustical vision in the sperm whale, Physeter catodon].
    Morozov VP
    Zh Evol Biokhim Fiziol; 1976; 12(1):68-74. PubMed ID: 941554
    [No Abstract]   [Full Text] [Related]  

  • 14. Neuroanatomy of the killer whale (Orcinus orca) from magnetic resonance images.
    Marino L; Sherwood CC; Delman BN; Tang CY; Naidich TP; Hof PR
    Anat Rec A Discov Mol Cell Evol Biol; 2004 Dec; 281(2):1256-63. PubMed ID: 15486954
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Neuroanatomy of the subadult and fetal brain of the Atlantic white-sided dolphin (Lagenorhynchus acutus) from in situ magnetic resonance images.
    Montie EW; Schneider GE; Ketten DR; Marino L; Touhey KE; Hahn ME
    Anat Rec (Hoboken); 2007 Dec; 290(12):1459-79. PubMed ID: 17957751
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structure of the cerebral cortex of the humpback whale, Megaptera novaeangliae (Cetacea, Mysticeti, Balaenopteridae).
    Hof PR; Van der Gucht E
    Anat Rec (Hoboken); 2007 Jan; 290(1):1-31. PubMed ID: 17441195
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Diffusion tensor imaging of dolphin brains reveals direct auditory pathway to temporal lobe.
    Berns GS; Cook PF; Foxley S; Jbabdi S; Miller KL; Marino L
    Proc Biol Sci; 2015 Jul; 282(1811):. PubMed ID: 26156774
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Convergent evolution in toothed whale cochleae.
    Park T; Mennecart B; Costeur L; Grohé C; Cooper N
    BMC Evol Biol; 2019 Oct; 19(1):195. PubMed ID: 31651234
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cross-sectional anatomy, computed tomography and magnetic resonance imaging of the head of common dolphin (Delphinus delphis) and striped dolphin (Stenella coeruleoalba).
    Alonso-Farré JM; Gonzalo-Orden M; Barreiro-Vázquez JD; Barreiro-Lois A; André M; Morell M; Llarena-Reino M; Monreal-Pawlowsky T; Degollada E
    Anat Histol Embryol; 2015 Feb; 44(1):13-21. PubMed ID: 24527804
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Higher neuron densities in the cerebral cortex and larger cerebellums may limit dive times of delphinids compared to deep-diving toothed whales.
    Ridgway SH; Brownson RH; Van Alstyne KR; Hauser RA
    PLoS One; 2019; 14(12):e0226206. PubMed ID: 31841529
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.