These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 20203748)

  • 1. Signal current probability distribution for optical heterodyne receivers in the turbulent atmosphere. 2: Experiment.
    Churnside JH; McIntyre CM
    Appl Opt; 1978 Jul; 17(14):2148-52. PubMed ID: 20203748
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Signal current probability distribution for optical heterodyne receivers in the turbulent atmosphere. 1: theory.
    Churnside JH; McIntyre CM
    Appl Opt; 1978 Jul; 17(14):2141-7. PubMed ID: 20203747
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Joint signal current probability distribution for optical heterodyne receiver arrays in the turbulent atmosphere.
    Churnside JH; McIntyre CM
    Appl Opt; 1979 Jul; 18(13):2315-22. PubMed ID: 20212652
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Heterodyne receivers for atmospheric optical communications.
    Churnside JH; McIntyre CM
    Appl Opt; 1980 Feb; 19(4):582-90. PubMed ID: 20216897
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of atmospheric turbulence on heterodyne lidar performance.
    Belen'kii MS
    Appl Opt; 1993 Sep; 32(27):5368-72. PubMed ID: 20856346
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Heterodyne Doppler 1-microm lidar measurement of reduced effective telescope aperture due to atmospheric turbulence.
    Chan KP; Killinger DK; Sugimoto N
    Appl Opt; 1991 Jun; 30(18):2617-27. PubMed ID: 20700251
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Statistical properties of He-Ne laser radiation reflected through a turbulent atmosphere.
    Bensimon D; Englander A; Shtrikman S; Slatkine M; Treves D
    Appl Opt; 1981 Mar; 20(6):947-50. PubMed ID: 20309236
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optical propagation in laboratory-generated turbulence.
    Elliott RA; Kerr JR; Pincus PA
    Appl Opt; 1979 Oct; 18(19):3315-23. PubMed ID: 20216599
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of atmospheric phase compensation on optical heterodyne power measurements.
    Belmonte A
    Opt Express; 2008 Apr; 16(9):6756-67. PubMed ID: 18545378
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dual-channel heterodyne measurements of atmospheric phase fluctuations.
    Ridley KD; Jakeman E; Bryce D; Watson SM
    Appl Opt; 2003 Jul; 42(21):4261-8. PubMed ID: 12921273
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Residual errors in laser interferometry from air turbulence and nonlinearity.
    Bobroff N
    Appl Opt; 1987 Jul; 26(13):2676-82. PubMed ID: 20489941
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Coherent laser radar performance for general atmospheric refractive turbulence.
    Frehlich RG; Kavaya MJ
    Appl Opt; 1991 Dec; 30(36):5325-52. PubMed ID: 20717362
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Imaging and target detection with a heterodyne-reception optical radar.
    Shapiro JH; Capron BA; Harney RC
    Appl Opt; 1981 Oct; 20(19):3292-313. PubMed ID: 20333146
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Analyzing the efficiency of a practical heterodyne lidar in the turbulent atmosphere: telescope parameters.
    Belmonte A
    Opt Express; 2003 Aug; 11(17):2041-6. PubMed ID: 19466090
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Remote sensing of wind velocity and strength of refractive turbulence using a two-spatial-filter receiver.
    Hanson SG; Churnside JH; Wilson JJ
    Appl Opt; 1994 Sep; 33(25):5859-68. PubMed ID: 20935989
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Heterodyne lidar returns in the turbulent atmosphere: performance evaluation of simulated systems.
    Belmonte A; Rye BJ
    Appl Opt; 2000 May; 39(15):2401-11. PubMed ID: 18345150
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of the atmosphere on laser beam propagation.
    Buck AL
    Appl Opt; 1967 Apr; 6(4):703-8. PubMed ID: 20057830
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interferometry through the turbulent atmosphere at an optical path difference of 354 m.
    Herrick RB; Meyer-Arendt JR
    Appl Opt; 1966 Jun; 5(6):981-3. PubMed ID: 20048993
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Remote sensing of atmospheric winds using speckleturbulence interaction, a CO(2) laser, and optical heterodyne detection.
    Holmes JF; Amzajerdian F; Gudimetla RV; Hunt JM
    Appl Opt; 1988 Jun; 27(12):2532-8. PubMed ID: 20531787
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Propagation of a partially coherent hollow vortex Gaussian beam through a paraxial ABCD optical system in turbulent atmosphere.
    Zhou G; Cai Y; Chu X
    Opt Express; 2012 Apr; 20(9):9897-910. PubMed ID: 22535082
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.